• 제목/요약/키워드: bilinear systems

검색결과 177건 처리시간 0.023초

불확실한 $L\ddot{u}$ 카오스 시스템을 위한 적응 퍼지 Bilinear 동기화 제어 설계 (Adaptive Fuzzy Bilinear Synchronization Control Design for Uncertain $L\ddot{u}$ Chaos System)

  • 백재호;이희진;박민용
    • 전자공학회논문지CI
    • /
    • 제47권3호
    • /
    • pp.59-66
    • /
    • 2010
  • 본 논문은 불확실한 $L\ddot{u}$ 카오스 시스템의 동기화를 위한 적응 퍼지 bilinear 동기화 제어 설계 방법을 제안한다. $L\ddot{u}$ 카오스 시스템은 알려지지 않은 파라미터를 가지고 있다고 가정한다. 먼저, 불확실한 $L\ddot{u}$ 카오스 시스템을 TS 퍼지 bilinear 모델링을 통해 재구성한다. 불확실한 파라미터를 가진 TS 퍼지 bilinear $L\ddot{u}$ 카오스 시스템을 기반으로한 적응 퍼지 bilinear 동기화 제어 기법을 설계한다. Lyapunov 이론을 통해서 설계된 적응 퍼지 bilinear 동기화 제어 기법을 통한 TS 퍼지 bilinear $L\ddot{u}$ 카오스 시스템과 제안된 슬레이브 시스템 간의 오차 다이나믹 시스템의 안정성을 보장하고 이를 통해서 불확실한 파라미터를 추정 할 수 있는 적응 규칙을 유도한다. 제안된 동기화 제어 기법을 시뮬레이션을 통해서 그 명확성을 보이고자 한다.

르장드르 웨이블릿을 이용한 쌍일차 시스템 수치 해석 (Numerical Method for the Analysis of Bilinear Systems via Legendre Wavelets)

  • 김범수
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.827-833
    • /
    • 2013
  • In this paper, an efficient computational method is presented for state space analysis of bilinear systems via Legendre wavelets. The differential matrix equation is converted to a generalized Sylvester matrix equation by using Legendre wavelets as a basis. First, an explicit expression for the inverse of the integral operational matrix of the Legendre wavelets is presented. Then using it, we propose a preorder traversal algorithm to solve the generalized Sylvester matrix equation, which greatly reduces the computation time. Finally the efficiency of the proposed method is discussed using numerical examples.

적응 쌍선형 필터의 RPEM 알고리즘 (RPEM Algorithm for Adaptive Bilinear Filter)

  • 백흥기;황지원;안봉만
    • 전자공학회논문지B
    • /
    • 제30B권3호
    • /
    • pp.10-21
    • /
    • 1993
  • Bilinear models are attractive for adaptive filtering applications because they can approximate a large class of nonlinear systems adequately, and usually with considerable parsimony in the number of coefficients compared with Volterra models. But bilinear filters have stability problem because they involve nonlinear feedback. Adaptive algorithms for bilinear filters may be diverge and have poor convergence characteristics when input signal is large In this paper, necessary and sufficient condition for mean square stability of bilinear filters for given input signal statistics is briefly described, and the method obtaining the input bound to guarantee the stability of bilinear filters is presented. New RPEM algorithm, which does not diverge and has the superior convergence characteristics compared with the conventional RPEM algorithm when input signal is large, is derived by applying the time-varying Kalman filtering concept to the conventional RPEM algorithm.

  • PDF

Fully Verifiable Algorithm for Secure Outsourcing of Bilinear Pairing in Cloud Computing

  • Dong, Min;Ren, Yanli;Zhang, Xinpeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3648-3663
    • /
    • 2017
  • With the development of cloud computing and widespread availability of mobile devices, outsourcing computation has gotten more and more attention in cloud computing services. The computation of bilinear pairing is the most expensive operation in pair-based cryptographic schemes. Currently, most of the algorithms for outsourcing bilinear pairing have small checkability or the outsourcers need to operate expensive computations. In this paper, we propose an efficient algorithm for outsourcing bilinear pairing with two servers, where the outsourcers can detect the errors with a probability of 1 if the cloud servers are dishonest, and the outsourcers are not involved in any complex computations. Finally, the performance evaluation demonstrates that the proposed algorithm is most efficient in all of fully verifiable outsourcing algorithms for bilinear pairing.

쌍일차 공정의 적응 예측제어 (An adaptive predictive control for the bilinear process)

  • 노균;윤인섭;여영구;송형근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.344-349
    • /
    • 1990
  • Under the assumption that process input/output data are sufficiently rich to allow reasonable plant identification, a long-range predictive control method for SISO bilinear plant is derived. In order to ensure offset-free behaviour of the control method, a new bilinear CARIMA model with variable dead-time is introduced. Furthermore, to extend the maximum output prediction horizon, the future predicted outputs in the bilinear term are assumed to be equal to the known future set-points. With a classical recursive adaptation algorithm, the proposed control scheme is capable of stable control of bilinear plants with variable parameters, with variable dead-time, and with a model order which changes instantaneously. Several simulation results demonstrate the characteristics of the proposed bilinear model predictive control method.

  • PDF

A MODEL-ORDER REDUCTION METHOD BASED ON KRYLOV SUBSPACES FOR MIMO BILINEAR DYNAMICAL SYSTEMS

  • Lin, Yiqin;Bao, Liang;Wei, Yimin
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.293-304
    • /
    • 2007
  • In this paper, we present a Krylov subspace based projection method for reduced-order modeling of large scale bilinear multi-input multi-output (MIMO) systems. The reduced-order bilinear system is constructed in such a way that it can match a desired number of moments of multi-variable transfer functions corresponding to the kernels of Volterra series representation of the original system. Numerical examples report the effectiveness of this method.

Bilinear mode predictive control methods for chemical processes

  • Yeo, Yeong-Koo;Oh, Sea Cheon;Williams, Dennis C.
    • 제어로봇시스템학회지
    • /
    • 제2권1호
    • /
    • pp.59-71
    • /
    • 1996
  • In the last decade, the model predictive control methods have enjoyed many industrial applications with successful results. Although the general predictive control methods for nonlinear chemical processes are not yet formulated, the promising features of the model predictive control methods attract attentions of many researchers who are involved with difficult but important nonlinear process control problems. Recently, the class of bilinear model has been introduced as an useful tool for examining many nonlinear phenomena. Since their structural properties are similar to those of linear models, it is not difficult to develop a robust adaptive model predictive control method based on bilinear model. We expect that the model predictive control method based on bilinear model will expand its region in the world of nonlinear systems.

  • PDF

The identification of continuous-time systems within a closed-loop

  • Bae, Chul-Min;Wada, Kiyoshi;Imai, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.157-160
    • /
    • 1996
  • Physical systems axe generally continuous-time in nature. However as the data measured from these systems is generally in the form of discrete samples, and most modern signal processing is performed in the discrete-time domain, discrete-time models are employed. This paper describes methods for estimating the coefficients of continuous-time system within a closed loop control system. The method employs a recursive estimation algorithm to identify the coefficients of a discrete-time bilinear-operator model. The coefficients of the discrete-time bilinear-operator model closely approximate those of the corresponding continuous-time Laplace transform transfer function.

  • PDF

Robust $H_{\infty}$ Control for Bilinear Systems with Parameter Uncertainties via output Feedback

  • Kim, Young-Joong;Lee, Su-Gu;Chang, Sae-Kwon;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.386-391
    • /
    • 2003
  • This paper focuses on robust $H_{\infty}$ control for bilinear systems with time-varying parameter uncertainties and exogenous disturbance via output feedback. $H_{\infty}$ control is achieved via separation into a $H_{\infty}$ state feedback control problem and a $H_{\infty}$ state estimation problem. The suitable robust stabilizing output feedback control law can be constructed in term of approximated solution to x-dependent Riccati equation using successive approximation technique. Also, the $H_{\infty}$ filter gain can be constructed in term of solution to algebraic Riccati equation. The output feedback control robustly stabilizes the plant and guarantees a robust $H_{\infty}$ performance for the closed-loop systems in the face of parameter uncertainties and exogenous disturbance.

  • PDF

쌍선형 시스템의 추종 성능 강화를 위한 예측 제어 알고리즘 (Enhancing Tracking Performance of a Bilinear System using MPC)

  • 김석균;김정수;이영일
    • 제어로봇시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.237-242
    • /
    • 2015
  • This paper presents a method to enhance tracking performance of an input-constrained bilinear system using MPC (Model Predictive Control) when a feasible tracking control is known. Since the error dynamics induced by the known tracking control is asymptotically stable, there exists a Lyapunov function for the stable error dynamics. By defining a cost function including the Lyapunov function and describing tracking performance, an MPC law is derived. In simulation, the performance of the proposed MPC law is demonstrated by applying it to a converter model.