• Title/Summary/Keyword: best linear unbiased

Search Result 81, Processing Time 0.027 seconds

A Study on the Construction of Weights for Combined Rolling Samples (순환표본의 결합을 위한 가중치 산출에 대한 연구)

  • Song, Jong-Ho;Park, Jin-Woo;Byun, Jong-Seok;Park, Min-Gue
    • Survey Research
    • /
    • v.11 no.1
    • /
    • pp.19-41
    • /
    • 2010
  • Although it is possible to provide statistically reliable estimators of the entire population parameters based on each independent rolling sample, estimators of the small areas may not have the required statistical efficiency. Thus, in general, small area estimators are calculated based on the combined rolling sample after entire rolling sample survey is finished. In this study, we considered the construction of weights that is necessary in the analysis of the combined rolling sample. Unlike the past studies that provided the empirical results for the corresponding specific rolling sample survey, we considered linear models that depends only on design variables and rolling period and provided the corresponding Best Linear Unbiased Predictor(BLUP). Through a simulation study, we proposed the estimators for the population parameters that are robust to model failure and the BLUP under the assumed model. The results are applied to the 4th Korea National Health and Nutrition Examination Survey.

  • PDF

The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents

  • Lee, Young-Sup;Shin, Donghyun;Lee, Wonseok;Taye, Mengistie;Cho, Kwanghyun;Park, Kyoung-Do;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP). This suggestion is based on the best linear unbiased prediction (BLUP) and the Fisher's fundamental theorem of natural selection both of which are trait-dependent. Fisher's theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to $2^*SNP$ effect.

Small Domain Estimation of the Proportion Using Survey Weights

  • Kim, Dal-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1179-1189
    • /
    • 2007
  • In this paper, we estimate the proportion of individuals having health insurance in a given year for several small domains cross-classified by age, sex and other demographic characteristics using the data provided by the National Center for Health Statistics(NCHS). We employ Bayesian as well as frequentist methodology to obtain small domain estimates and the associated measures of precision. One of the new features of our study is that we utilize the survey weights along with the model to derive the small domain estimates.

  • PDF

카나다의 돼지유전능력 평가

  • 현재용
    • 종축개량
    • /
    • v.17 no.2
    • /
    • pp.57-60
    • /
    • 1995
  • 카나다의 돼지개량에 대한 국가적 유전능력 평가는 산육능력(100kg의 등지방과 일령)과 모돈의 번식능력(총산자수)을 BLUP animal model(최선형 불변예상치 가축모형 : Best Linear Unbiased Predictor Animal Model)을 이용하여 정규적으로 평가하고 있다. 새로운 검정자료가 수집되어 질때마다 매번 BLUP평가가 이루어져 농장으로 제공된다. 현재의 유전능력 변화에 대한 추정가는 연간 등지방 두께 0.35mm와 100kg도달일령 1.5일이 향상되었다. 이것은 1985년 BLUP이 소개된 이전보다 등지방 $50\%$, 일령 20배 이상의 개량효과이다. 그 외에 모돈의 번식형질에 대한 개량은 계속적으로 연구가 진행되고 있으며 국가적 육종계획에는 도체와 육질에 대한 유전적 개량사업이 추진되고 있다.

  • PDF

Least Squares Estimation with Autocorrelated Residuals : A Survey

  • Rhee, Hak-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.4 no.1
    • /
    • pp.39-56
    • /
    • 1975
  • Ever since Gauss discussed the least-squares method in 1812 and Bertrand translated Gauss's work in French, the least-squares method has been used for various economic analysis. The justification of the least-squares method was given by Markov in 1912 in connection with the previous discussion by Gauss and Bertrand. The main argument concerned the problem of obtaining the best linear unbiased estimates. In some modern language, the argument can be explained as follow.

  • PDF

A Statistical Estimation of The Universal Constants Using A Simulation Predictor

  • Park, Jeong-Soo-
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1992.10a
    • /
    • pp.6-6
    • /
    • 1992
  • This work deals with nonlinear least squares method for estimating unknown universial constants C in a computer simulation code real experimental data(or database) and computer simulation data. The best linear unbiased predictor based on a spatial statistical model is fitted from the computer simulation data. Then nonlinear least squares estimation method is applied to the real data using the fitted prediction model(or simulation predictor) as if it were the true simulation model. An application to the computational nuclear fusion device is presented.

  • PDF

Linear Input/output Data-based Predictive Control with Integral Property

  • Song, In-Hyoup;Yoo, Kee-Youn;Park, Myung-Jung;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.5-101
    • /
    • 2001
  • A linear input/output data-based predictive control with integral action is developed. The control input is obtained directly from the input/output data in a single step. However, the state estimation in subspace identification gives a biased estimate and there is model mismatch when the controller is applied to a nonlinear process. To overcome such difficulties, we add integral action to a linear input/output data-based predictive controller by augmenting the integrated white noise disturbance model and use each of best linear unbiased estimation(BLUE) filter and Kalman filter as a stochastic observer for the unmeasured disturbance. When applied to a continuous styrene polymerization reactor the proposed controller demonstrates.

  • PDF

A BLUE Estimator for Passive Localization by TDOA Method (TDOA 방식 기반 위치 추정을 위한 BLUE 추정기)

  • Lee, Young-Kyu;Yang, Sung-Hoon;Kwon, Taeg-Yong;Lee, Chang-Bok;Park, Byung-Koo;Lee, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11C
    • /
    • pp.702-711
    • /
    • 2011
  • In this paper, we derived a closed-form equation of a Best Linear Unbiased Estimator (BLUE) and its Crammer-Rao Lower Bound (CRLB) for the estimation of the position of the emitter based on the Time Difference of Arrival (TDOA) teclmique. The BLUE and CRLB were derived for the case of estimating 2 dimensional position of the emitter with 3 base stations or sensors, and for this purpose, we nsed an approximated equation of the TDOA hyperbola equation obtained from the first order Taylor-series after setting the reference points of the position. The derived equation can be used for any kind of noises which are uncorrelated in each other in the TOA measurement noises and for a white Gaussian noise also.

A BLUE Estimator of 3-D Positioning by TDOA Method (TDOA 방식 기반 3-D 위치 추정을 위한 BLUE 추정기)

  • Lee, Young-Kyu;Yang, Sung-Hoon;Kwon, Tac-Yung;Lee, Chang-Bok;Park, Byung-Koo;Lee, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.10
    • /
    • pp.912-920
    • /
    • 2012
  • In this paper, we derived a closed-form equation of a Best Linear Unbiased Estimator (BLUE) estimator for the 3 dimensional estimation of the position of the emitter based on the Time Difference of Arrival (TDOA) technique. The BLUE derived for the case of estimating 3 dimensional position of the emitter with 4 base stations or sensors, and for this purpose, we used an approximated equation of the TDOA hyperbola equation obtained from the first order Taylor-series after setting the reference points of the position. The derived equation can be used for any kind of noises which are uncorrelated in each other in the TOA measurement noises and for a white Gaussian noise also.

Accuracy of genomic breeding value prediction for intramuscular fat using different genomic relationship matrices in Hanwoo (Korean cattle)

  • Choi, Taejeong;Lim, Dajeong;Park, Byoungho;Sharma, Aditi;Kim, Jong-Joo;Kim, Sidong;Lee, Seung Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.907-911
    • /
    • 2017
  • Objective: Intramuscular fat is one of the meat quality traits that is considered in the selection strategies for Hanwoo (Korean cattle). Different methods are used to estimate the breeding value of selection candidates. In the present work we focused on accuracy of different genotype relationship matrices as described by forni and pedigree based relationship matrix. Methods: The data set included a total of 778 animals that were genotyped for BovineSNP50 BeadChip. Among these 778 animals, 72 animals were sires for 706 reference animals and were used as a validation dataset. Single trait animal model (best linear unbiased prediction and genomic best linear unbiased prediction) was used to estimate the breeding values from genomic and pedigree information. Results: The diagonal elements for the pedigree based coefficients were slightly higher for the genomic relationship matrices (GRM) based coefficients while off diagonal elements were considerably low for GRM based coefficients. The accuracy of breeding value for the pedigree based relationship matrix (A) was 13% while for GRM (GOF, G05, and Yang) it was 0.37, 0.45, and 0.38, respectively. Conclusion: Accuracy of GRM was 1.5 times higher than A in this study. Therefore, genomic information will be more beneficial than pedigree information in the Hanwoo breeding program.