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INTRODUCTION 
 
Holstein-Friesian cattle have been selected intensively 

during the last millennia, especially in the last five decades 

after the breeding programs were started in the 1960s 
(Skjervold and Langholz, 1964; Mwai et al., 2015). Holsteins 
have been selected for milk yield and milk composition, 
which was progressed through the development of 
reproductive technologies like pedigree evaluation of bulls, 
artificial insemination, embryo transfer and the like. Recently, 
genomic selection have accelerated the selection process 
(Catillo et al., 2001; Goddard and Hayes, 2007). This 
selection has resulted in an increase in the frequency of 
favorable alleles affecting selected traits. The selection will 
have also increased the frequency of alleles of neutral 
markers in linkage disequilibrium with the favorable alleles 
(Smith and Haigh, 1974). In addition, identifying genomic 
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ABSTRACT: Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current 
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theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive 
genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. 
Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value 
<0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B
(PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron 
specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), 
ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), 
carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future 
artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current 
selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is 
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regions subject to selection could reveal the mutations 
responsible for improved production (Boitard and Rocha, 
2013). However, the current selection trends have been 
ignored. Thus, we focused on the current selection trends and 
selection coefficient based on single nucleotide 
polymorphisms (SNPs). 

To predict each SNP’s selection coefficient associated 
with Holstein milk-related traits, we used Fisher’s 
fundamental theorem of natural selection, which states that 
the rate of increase in fitness of any organism at any time is 
equal to its genetic variance in fitness at that time (Hartl, 
1988). We can calculate the relative selection coefficient 
based upon this theorem and the linear additive model. The 
model is the best linear unbiased prediction (BLUP). BLUP 
was originally proposed by Henderson (Henderson, 1975). 
The predicted SNP effects from BLUP were used to calculate 
the additive genetic variances of the SNPs. Fisher’s theorem 
links the additive genetic variance to the selection coefficient 
(Hartl, 1988). The selection coefficient is dependent on the 
phenotypes and their units. So it can be called “expected 
relative current selection coefficient”. “Expected” implies 
that the selection coefficient is the expected value in the F1 
generation. “Relative” means that it is dependent on the unit 
of phenotypes. Thus, it was recalibrated by the maximum 
value. The predicted value of the selection coefficient could 
be the actual value if selection were performed only using 
breeding values of a given trait and selection followed 
Fisher’s theorem.  

The genes containing highly significant SNPs were 
obtained using Ensembl website (Flicek et al., 2011). The 
BLUP-based relative selection coefficient has the current 
selection information. We analyzed the ontology of the genes 
containing the highly significant SNPs (top 1% or p-value 
<0.01). The P-values were obtained under the normal 
assumption of selection coefficient. 

 
MATERIALS AND METHODS 

 
Materials 

Female Holsteins were randomly collected in Korea. The 
phenotypes were milk yield, fat and protein contents with 
parity 1 and the number of Holstein with phenotypic values 
in the data was 462. Genomic DNAs from Holstein cows 
were genotyped using Illumina 50K SNP Beadchip (Illumina, 
San Diego, CA, USA) following the standard protocol. A 
total number of 41,099 genotyped SNPs were imputed using 
BEAGLE version 4.0 (Browning and Browning, 2009) and 
filtered using minor allele frequency (MAF<0.05), Hardy-
Weinberg equilibrium (HWE p<0.001), missing genotype 
data (>0.1) and we excluded the SNPs on the sex 
chromosome. After these quality controls, there remained 
37,854 autosomal SNPs. Individual animals with missing 
phenotypic values were excluded before filtering, e.g., 

filtering by MAF. 
 

Prediction of SNP effects for milk production traits 
The BLUP model is the following formula: 
 
y = Xb+Zu+e                             (1) 
 
Where y was the vector of phenotypic values, X and Z 

were the incidence matrices, b and u were vectors of fixed 
and random effects, respectively. Random effects and 
residual errors were assumed to be normally distributed. 
These multivariate normal distributions is usually notated as 
u~MVN(0,Gu) and e~MVN(0,R) where MVN are denoted 
as multivariate normal distribution. The SNP effects were 
calculated using single nucleotide polymorphism-genomic 
best linear unbiased prediction (SNP-GBLUP) using the 
SNP-SNP relationship matrix (Lee et al., 2014). This SNP-
SNP relationship matrix (SSRM) is based on the genomic 
relationship matrix (GRM) (Goddard et al., 2011). SSRM 
was denoted as Gu and GRM as G. The SSRM (Gu) can be 
calculated using the relationship, Gu = (ZTG–1Z)–1 (Lee et al., 
2014). The fixed effect was season. The R package, “rrBLUP” 
was used for the analysis (Endelman, 2011). 

 
Estimation of expected current relative selection 
coefficient 

Fisher’s fundamental theorem of natural selection states 
that fitness change of any organism per unit time is equal to 
its genetic variance in fitness at that time. In the linear 
additive model, therefore, we can easily calculate the 
additive genetic variance and selection coefficient based on 
this theorem (Price, 1972; Hartl, 1988; Ewens, 1989). The 
relative selection coefficient was calculated using the 
following formula: 
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Where i represents ith individual, j represents jth marker 
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or SNPs, Zij represents the ith individuals and jth SNPs’ 0, 1, 
2 coding. uj represents the SNP effect. The additive genetic 
variance calculation is a data-driven method which uses the 
Z matrix, directly. 

Equation (3) is based on the Fisher’s fundamental 
theorem of natural selection (Frank and Slatkin, 1992). The 
relative selection coefficient of a given locus is in the range 
of -1(minimum) to 1(maximum). We assumed the normality 
of relative selection coefficient and then set the criteria of 
highly selective SNPs as p-value <0.01 (nearly top 1% SNPs).  

Especially, if the SNP markers are under HWE in current 
generation, s2 = 4u2 according to var(Zi) = 2pq. If we pay 
heed on the expected relationship of the sign between 
selection coefficient s and SNP effect u, we can derive that s 
= 2u. 

 
sj = 2uj (if HWE in current generation)          (4) 
 

Characterization of candidate genes under selection 
regions 

We identified the genes which contained significantly 
selective SNPs and performed gene ontology analysis using 
the ClueGo plugin of Cytoscape program (Bindea et al., 
2009). The gene catalog was retrieved from Ensembl website 
(www.ensembl.org). In the ClueGo analysis, we used the 
default parameter except for setting the 2 minimum number 
of genes in gene ontology (GO) term/Pathway selection and 
then we corrected p-value through Benjamini-Hochberg 
method (Benjamini and Hochberg, 1995). 

 
RESULTS AND DISCUSSION 

 
SNP-GBLUP method results and highly selective SNPs 

The mean and standard deviation of Holstein milk yield, 
fat and protein records for parity 1 were 8,845; 1,425, 339; 
58 and 283; 44, respectively. We estimated narrow-sense 
heritability of the milk yield, fat and protein using results of 
SNP-GBLUP method which were 0.39, 0.45, and 0.40, 
respectively. The fixed effects (season) of milk yield, fat and 
protein (kilograms) were (8,655, 8,847, 8,935, 8,907), (325, 
342, 344, 343) and (275, 286, 286, 283) for spring, summer, 
autumn, and winter, respectively. From SNP effects from 
SNP-GBLUP method, we estimated the selection 
coefficients of each SNP.  

Figure 1 shows the flow chart of the analysis which is 
designed by theory and method. Figure 2 shows the plot of 
relative selection coefficient against SNP effect. It implies 
that the selection coefficient is mainly determined by SNP 
effect. The sign of relative selection coefficient was inferred 
from the sign of SNP effect. Figure 3 indicates the diagram 
of ontology of the genes which contain nearly the top 1% 
SNPs in the protein contents. We selected the genes 
containing SNPs with p-value <0.01 (nearly top 1% SNPs) 

and performed gene ontology. The condition was the default 
value except for setting 2 as the minimum number of genes 
in the GO Term/Pathway selection item.  

Table 1 illustrates the F1 generation’s expected allele 
frequency change under linear additive model. It 
demonstrates that allele frequency can be predicted via the 
SNP effect. Table 2 shows highly selective SNPs and the 
genes containing them (any p-value <0.001; nearly top 
0.1% SNPs). The genes containing very highly selective 
SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits 
and p-value <0.001 (nearly top 0.1%) in any traits were 
phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 
(STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 
(EFNA1), netrin 4 (NTN4), neuron specific gene family 
member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 
(NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), 
ADP-ribosylation factor interacting protein 1 (ARFIP1), 
mutL homolog 1 (MLH1), transmembrane channel-like 7 
(TMC7), carboxypeptidase X, member 2 (CPXM2), and 
ADAM metallopeptidase domain 12 (ADAM12). We 
inferred the sign of relative selection coefficient from the 
SNP effect information in Table 1. The positive sign of SNP 
effect represents that of the selection coefficient and vice 
versa. 

 
Gene ontology analysis of highly selective SNPs 

We chose the highly selective SNPs (p-value <0.01) in 
milk yield, fat, protein-associated analyses and performed 
the gene ontology analysis with Cytoscape ClueGo plugin 
program (Shannon et al., 2003). For milk yield and fat cases, 

Figure 1. The figure shows the flow chart of our analysis which is 
stipulated by method and theory. The single nucleotide 
polymorphisms (SNP) effects, additive genetic variance and 
selection coefficient were sequentially calculated. The gene 
ontology was performed using Cytoscape program ClueGo plugin.
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Table 1. F1 generation’s (the next in the current generation) allele frequency change according to the single nucleotide polymorphism 
(SNP) effect under linear additive model1  

Allele frequency (P) 0.25 (AA) 0.5 (AA’) 0.25 (A’A’) 

Fitness change 1-2u 1-u 1 
SNP effect Allele frequency change(F1)   
0.5 0 0.5 0.5 
0.05 0.24 0.5 0.26 
0.25 0.17 0.5 0.33 
0.005 Approximately HWE Approximately HWE Approximately HWE 
0 HWE HWE HWE 
1 We assumed the Hardy-Weinberg equilibrium (HWE) in P (Parental) generation and depicted the SNP effect as selection coefficient according to Equation 

(4). The allele coded as “2” assumed to be A’A’ and u denoted SNP effect*. 
* Note that the SNP effect is sensitive to the unit of phenotypic values and we assumed that the SNP effect would be the selection coefficient*2 

 

Figure 2. Plot of single nucleotide polymorphisms (SNP) effects and relative selection coefficients of SNPs. The phenotypes were milk
yield (A panel), fat (B panel) and protein content (C panel). It was estimated using SNP-genomic best linear unbiased prediction (SNP-
GBLUP) and Fisher’s fundamental theorem of natural selection. The plot shows that the SNP effect is the major factor to determine the
selection coefficient. 

 

Figure 3. Diagram of gene ontology of the genes which contain the highly selective SNPs in the milk protein trait. We selected the genes
containing single nucleotide polymorphisms (SNPs) with p-value <0.01 (nearly top 1% SNPs) and performed gene ontology. The condition
was the default value except setting 2 minimum number of genes in the gene ontology (GO) Term/Pathway selection item. The positive
regulation of dendritic spine morphogenesis was the most significant gene ontology. Dendritic spine morphogenesis is important in synaptic
development and plasticity of the mammalian brain. 
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there were no great information about gene ontology. For 
proteins, significant gene ontologies were dendritic spine 
morphogenesis and the nitric oxide biosynthetic process with 

dendritic spine morphogenesis being highly significant. 
Dendritic spine is the major site of excitatory synaptic 
transmission in the mammalian brain and is very important 

Table 2. Highly selective SNPs with any p-value <0.001 (top 1% SNPs) in the analysis of milk yield, fat and protein phenotypes and the 
genes containing it1 

Chromosome SNP 
SNP 

position 
MRSC FRSC PRSC Milk2 Fat3 Protein4 GeneID5 Gene start Gene end Gene name

1 ARS-BFGL-NGS-
29472 

138,650,000 0.444 0.769 0.530 0.013455 0.000053 0.011769 ENSBTAG00000012798 138,455,304 138,676,649 KCNH8 

2 ARS-BFGL-NGS-
107330 

116,829,914 0.653 0.305 0.783 0.000563 0.063954 0.000402 ENSBTAG00000021327 116,803,654 116,839,529 DAW1 

3 BTA-99819-no-rs 79,508,402 –0.742 –0.698 –0.842 0.000098 0.000184 0.000142 ENSBTAG00000008636 79,284,893 79,734,224 PDE4B 
3 BTB-01155479 79,378,528 –0.754 –0.841 –0.957 0.000078 0.000009 0.000018 ENSBTAG00000008636 79,284,893 79,734,224 PDE4B 
3 ARS-BFGL-NGS-

31953 
79,480,234 –0.757 –0.693 –0.866 0.000073 0.000205 0.000094 ENSBTAG00000008636 79,284,893 79,734,224 PDE4B 

3 Hapmap39300-
BTA-99855 

79,333,053 –0.803 –0.881 –0.994 0.000028 0.000004 0.000009 ENSBTAG00000008636 79,284,893 79,734,224 PDE4B 

3 ARS-BFGL-NGS-
102149 

110,078,547 0.555 0.742 0.672 0.002813 0.000091 0.002019 ENSBTAG00000015969 110,074,348 110,109,946 STK40 

3 BTB-01582389 40,625,026 0.570 0.651 0.651 0.002235 0.000524 0.002682 ENSBTAG00000021217 40,448,699 40,682,012 COL11A1 
3 ARS-BFGL-NGS-

112442 
40,588,026 0.577 0.619 0.655 0.002023 0.000920 0.002540 ENSBTAG00000021217 40,448,699 40,682,012 COL11A1 

3 ARS-BFGL-NGS-
64215 

15,525,599 –0.622 –0.759 –0.802 0.000899 0.000054 0.000272 ENSBTAG00000020244 15,521,494 15,528,093 EFNA1 

4 BTB-00172204 31,172,819 0.326 0.690 0.524 0.052424 0.000256 0.012614 ENSBTAG00000015539 31,017,033 31,222,267 RAPGEF5
5 Hapmap53993-

rs29024740 
60,373,086 0.499 0.678 0.567 0.006441 0.000316 0.007694 ENSBTAG00000003183 60,372,425 60,502,966 NTN4 

5 BTB-00239812 121,135,969 0.582 0.229 0.723 0.001852 0.127036 0.000990 ENSBTAG00000020341 121,099,143 121,164,873 MOV10L1
6 ARS-BFGL-NGS-

4767 
107,186,270 0.515 0.806 0.578 0.005127 0.000024 0.006713 ENSBTAG00000005711 106,483,716 107,356,158 NSG1 

6 Hapmap38694-
BTA-76566 

61,591,415 0.533 0.401 0.783 0.003943 0.022142 0.000402 ENSBTAG00000027569 61,362,546 61,744,231 APBB2 

9 BTB-00404639 90,037,629 1.000 0.605 0.708 0.000000 0.001172 0.001220 ENSBTAG00000007159 89,969,586 90,255,801 ESR1 
9 Hapmap47116-

BTA-84683 
90,002,616 0.776 0.624 0.514 0.000054 0.000849 0.014135 ENSBTAG00000007159 89,969,586 90,255,801 ESR1 

10 ARS-BFGL-NGS-
113766 

81,459,970 –0.790 0.060 –0.842 0.000037 0.389680 0.000142 ENSBTAG00000009998 81,396,104 81,494,769 GALNTL1

10 ARS-BFGL-NGS-
82682 

89,774,836 0.698 0.095 0.775 0.000249 0.322371 0.000452 ENSBTAG00000020480 89,756,991 89,852,261 SPTLC2 

10 ARS-BFGL-NGS-
110578 

91,602,885 0.628 0.314 0.771 0.000863 0.058033 0.000483 ENSBTAG00000025324 91,597,994 92,223,876 NRXN3 

10 ARS-BFGL-NGS-
3900 

89,804,719 0.689 0.087 0.759 0.000296 0.337759 0.000583 ENSBTAG00000020480 89,756,991 89,852,261 SPTLC2 

11 ARS-BFGL-NGS-
51235 

37,228,325 0.627 0.368 0.835 0.000889 0.032657 0.000177 ENSBTAG00000006995 37,030,009 37,241,384 SPTBN1 

13 ARS-BFGL-NGS-
90758 

35,352,877 0.201 0.630 0.212 0.159441 0.000762 0.185064 ENSBTAG00000001204 35,331,913 35,368,126 JCAD 

13 Hapmap60259-
rs29016362 

34,887,980 0.067 0.627 0.112 0.373241 0.000804 0.319634 ENSBTAG00000027444 34,860,211 34,965,895 SVIL 

13 Hapmap49926-
BTA-24453 

21,167,068 -0.226 –0.740 –0.349 0.126467 0.000081 0.065057 ENSBTAG00000023216 21,049,546 21,386,152  

15 ARS-BFGL-NGS-
107160 

75,065,222 0.160 0.636 0.418 0.214312 0.000685 0.037164 ENSBTAG00000008465 75,047,569 75,068,534 ACS 

17 ARS-BFGL-NGS-
11818 

4,393,229 0.745 0.449 0.775 0.000100 0.012179 0.000452 ENSBTAG00000008816 4,308,229 4,436,083 TRIM2 

17 BTB-00668797 4,827,067 0.707 0.670 0.775 0.000210 0.000371 0.000452 ENSBTAG00000008438 4,732,242 4,868,678 ARFIP1 
17 ARS-BFGL-NGS-

77442 
63,480,469 0.576 0.413 0.759 0.002035 0.019096 0.000576 ENSBTAG00000001806 63,474,993 63,497,850 IQCD 

21 ARS-BFGL-NGS-
104549 

57,731,221 0.689 0.291 0.738 0.000296 0.073074 0.000794 ENSBTAG00000006620 57,596,461 57,783,306 SLC24A4 

22 Hapmap38236-
BTA-55228 

10,502,283 0.624 0.625 0.926 0.000925 0.000826 0.000037 ENSBTAG00000016758 10,492,112 10,585,992 MLH1 

23 Hapmap55007-
rs29021986 

13,484,531 0.361 0.617 0.380 0.036246 0.000945 0.052479 ENSBTAG00000027197 13,389,447 13,520,727 KIF6 

25 ARS-BFGL-NGS-
93374 

17,040,004 0.602 0.654 0.906 0.001351 0.000497 0.000052 ENSBTAG00000016505 17,039,666 17,081,449 TMC7 

26 ARS-BFGL-NGS-
19663 

43,933,332 0.931 0.691 0.919 0.000002 0.000249 0.000041 ENSBTAG00000018941 43,829,293 43,966,907 CPXM2 

26 ARS-BFGL-NGS-
110497 

45,870,133 0.542 0.620 0.604 0.003440 0.000895 0.004904 ENSBTAG00000012444 45,848,827 46,238,138 ADAM12 

26 ARS-BFGL-NGS-
30392 

44,539,739 –0.526 –0.750 –0.464 0.004132 0.000065 0.022510 ENSBTAG00000010957 44,431,214 44,558,731 LHPP 

26 ARS-BFGL-NGS-
30060 

45,983,109 0.673 0.606 0.805 0.000394 0.001141 0.000282 ENSBTAG00000012444 45,848,827 46,238,138 ADAM12 

28 ARS-BFGL-NGS-
28818 

7,138,132 0.378 0.614 0.318 0.030058 0.000997 0.087874 ENSBTAG00000020361 6,762,322 7,195,661 SLC35F3 

SNP, single nucleotide polymorphism; MRSC, milkyield relative selection coefficient; FRSC, fat relative selection coefficient; PRSC, protein relative 
selection coefficient. 
1 p-value was computed under the normality assumption of relative selection coefficient. The gene catalog was retrieved from Ensembl server. 
2 Milkyield p-value. 3 Fat p-value. 4 Protein p-value. 5 Ensembl gene ID. 
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in synaptic development and plasticity (Penzes et al., 2003; 
Tada and Sheng, 2006). The specific genes which produce 
milk protein and influence the morphogenesis of dendritic 
spine in the mammalian brain may be a putative and 
important target of future artificial selection trends in the 
Holstein cattle.  

 
SNP-GBLUP and selection coefficient  

The SNP-GBLUP has merits to predict the SNP effects 
by assigning the SNP-SNP relationship matrix (Lee et al., 
2014). The accurate estimation of the sign of SNP effect as 
well as its value is crucial to accurately predict the selection 
coefficient. Thus, we used the SNP-GBLUP rather than SNP-
BLUP which assumes the effect being IID (independent and 
identically distributed) between markers. Not only the 
sample size but also the accurate prediction of the SNP effect 
is necessary to predict the relative selection coefficient.  

 
Fisher’s theorem and best linear unbiased prediction  

One of Fisher’s contributions to population genetics is a 
fundamental theorem of natural selection. It elucidated 
selection theory and subsequently breeding science. (Frank 
and Slatkin, 1992). The theorem indicates that the change of 
average fitness can be related to genetic variance which is 
specific to markers like SNPs. Average fitness in the next 
generation can be designated through selection coefficient in 
the linear additive model. The fitness change in the next 
generation can lead to the change of selection coefficient. 
The linear additive model like BLUP was used to compute 
the genetic variance of each SNP.  

Figure 2 shows that the larger SNP effects, the greater 
selection coefficients. This finding that the selection 
coefficients are proportional to the SNP effects, matches the 
common sense of selection. If one individual had many SNPs 
with large effects, it would have large breeding values and 
would be selected by artificial selection. Thus, it seems to be 
natural that genetic factors like SNPs can determine the 
selection. It certainly links selection in the population to the 
breeding programs.  

 
The sign of relative selection coefficient of SNP 

The sign of the selection coefficient of a SNP is not 
explicit. However, the sign of SNP effect is definite. Thus we 
inferred the sign of relative selection coefficient of a SNP 
from SNP effect. A positive sign of relative selection 
coefficient indicates a positive sign of the SNP effect and 
vice versa. If the sign of a SNP effect were positive, the 
frequency of the allele coded as ‘2’ would increase and the 
contribution to the genomic estimated breeding values 
(GEBVs) would increase. If sign were negative, the situation 
would be vice versa, i.e. the frequency of the allele coded as 
‘0’ would increase by selective breeding.  

 

The features of our study 
The characteristics of our paper was: first, we found that 

the SNP effect in the BLUP model is equivalent to the 
selection coefficient and is the powerful cause of a 
population’s allele frequency change; second, we used 
Fisher’s theorem and SNP-GBLUP. We adopted Fisher’s 
theorem to calculate selection coefficient. SNP-GBLUP 
which uses the SSRM (SNP-SNP relationship matrix) via 
GRM to predict the SNP effects. 

 
IMPLICATIONS 

 
The objective of our study was to find the selection 

coefficient of SNP in the population and find the SNPs which 
are expected to be highly selective in the next generation. 
The sign of selection coefficient of SNP was inferred from 
the sign of SNP effect. The signs of highly selective SNPs (p-
value <0.01 or nearly top 1% SNPs) were nearly identical in 
all traits’ analyses. We found that the selection coefficients of 
SNPs were linearly proportional to the SNP effects. 
Especially, selection coefficient would be 2×SNP effect 
under HWE in the current generation. The significant genes 
may be crucial in future selection trends of Korean Holsteins. 
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