Browse > Article
http://dx.doi.org/10.5713/ajas.15.0476

The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents  

Lee, Young-Sup (Department of Natural Science, Interdisciplinary Program in Bioinformatics, Seoul National University)
Shin, Donghyun (Department of Agricultural Biotechnology, Animal Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Lee, Wonseok (Department of Agricultural Biotechnology, Animal Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Taye, Mengistie (Department of Agricultural Biotechnology, Animal Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Cho, Kwanghyun (National Livestock Research Institute)
Park, Kyoung-Do (Genomic Informatics Center, Hankyong National University)
Kim, Heebal (Department of Natural Science, Interdisciplinary Program in Bioinformatics, Seoul National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.1, 2016 , pp. 36-42 More about this Journal
Abstract
Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP). This suggestion is based on the best linear unbiased prediction (BLUP) and the Fisher's fundamental theorem of natural selection both of which are trait-dependent. Fisher's theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to $2^*SNP$ effect.
Keywords
Best Linear Unbiased Prediction [BLUP]; Expected Current Relative Selection Coefficient; Fisher's Fundamental Theorem of Natural Selection; Holstein; Milk Production Trait; Single Nucleotide Polymorphism-Genomic Best Linear Unbiased Prediction [SNP-GBLUP];
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Benjamini, Y. and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57:289-300.
2 Bindea, G., B. Mlecnik, H. Hackl, P. Charoentong, M. Tosolini, A. Kirilovsky, W.-H. Fridman, F. Pages, Z. Trajanoski, and J. Galon. 2009. Cluego: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091-1093.   DOI
3 Boitard, S. and D. Rocha. 2013. Detection of signatures of selective sweeps in the blonde d'aquitaine cattle breed. Anim. Genet. 44:579-583.   DOI
4 Browning, B. L. and S. R. Browning. 2009. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84:210-223.   DOI
5 Catillo, G., B. Moioli, and F. Napolitano. 2001. Estimation of genetic parameters of some productive and reproductive traits in italian buffalo. Genetic evaluation with blup-animal model. Asian Australas. J. Anim. Sci. 14:747-753.   DOI
6 Endelman, J. B. 2011. Ridge regression and other kernels for genomic selection with R package rrblup. Plant. Genome. 4:250-255.   DOI
7 Ewens, W. J. 1989. An interpretation and proof of the fundamental theorem of natural selection. Theor. Popul. Biol. 36:167-180.   DOI
8 Flicek, P., M. R. Amode, D. Barrell, K. Beal, S. Brent, D. Carvalho-Silva, P. Clapham, G. Coates, S. Fairley, and S. Fitzgerald et al. 2011. Ensembl 2012. Nucl. Acids Res. doi: 10.1093/nar/gkr991.   DOI
9 Frank, S. A. and M. Slatkin. 1992. Fisher's fundamental theorem of natural selection. Trends. Ecol. Evol. 7:92-95.   DOI
10 Goddard, M., B. J. Hayes, and T. H. E. Meuwissen. 2011. Using the genomic relationship matrix to predict the accuracy of genomic selection. J. Anim. Breed. Genet. 128:409-421.   DOI
11 Goddard, M. E. and B. Hayes. 2007. Genomic selection. J. Anim. Breed. Genet. 124:323-330.   DOI
12 Hartl, D. L. 1988. A Primer of Population Genetics. Sinauer Associates, Inc., Sunderland, MA, USA.
13 Henderson, C. R. 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423-447.   DOI
14 Lee, Y.-S., H.-J. Kim, S. Cho, and H. Kim. 2014. The usage of an SNP-SNP relationship matrix for best linear unbiased prediction (BLUP) analysis using a community-based cohort study. Genomics Inform. 12:254-260.   DOI
15 Mwai, O., O. Hanotte, Y.-J. Kwon, and S. Cho. 2015. African Indigenous Cattle: Unique Genetic Resources in a Rapidly Changing World. Asian Australas. J. Anim. Sci. 28:911-921.   DOI
16 Penzes, P., A. Beeser, J. Chernoff, M. R. Schiller, B. A. Eipper, R. E. Mains, and R. L. Huganir. 2003. Rapid induction of dendritic spine morphogenesis by trans-synaptic EphrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37:263-274.   DOI
17 Price, G. R. 1972. Fisher's 'fundamental theorem' made clear. Ann. Hum. Genet. 36:129-140.   DOI
18 Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498-2504.   DOI
19 Skjervold, H. and H. J. Langholz. 1964. Factors affecting the optimum structure of A. I. breeding in dairy cattle. Z. Tierz. Zuchtungsbio 80:25-40.
20 Smith, J. M. and J. Haigh. 1974. The hitch-hiking effect of a favourable gene. Genet. Res. 23:23-35.   DOI
21 Tada, T. and M. Sheng. 2006. Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 16:95-101.   DOI