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1. Introduction

Ever since Gauss discussed the least-squares method in 1812 and Bertrand
translated Gauss’s work in French, the least-squares method has been used
for various economic analysis.? The justification of the least-squares method
was given by Markov in 1912 in connection with the previous discussion
by Gauss and Bertrand. The main argument concerned the problem of obtain-
ing the best linear unbiased estimates. In some modern language, the argu-
ment can be explained as follow.

Suppose that we have a single linear specification between a wvariable y
and k—I1 explanatory wvariables xz, x3,++++--,x; and a disturbance term u such
that y=08x"+u, where 8= (81,8, ++++-,8s), Xx=(1, x2,x3,°+++++,x,) is a known
vector, and y and u are random variables. If we have n observations, we
can write

y = X0+ u

where y is a nx1 vector; X is a nXk matrix with the first column
being all ones; 8 is a kX1 vector of coefficients; u is a nx1 vector of
disturbances. We now make the following assumptions:

Al E(u)=0
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A2 E(uu’) =021,
A3 X is a matrix of fixed numbers
A4 X has a rank £, and £<n

Then it is well known that a least-squares estimate (LSE) of § is obtained
by f=(X’X)"1X’y. Furthermore such § is an unbiased, and it has the least
variance.?

In 1935, A.C. Aitken raised the question whether or not the assumptions
Al and A2 are valid, and he suggested alternative method for the cases in
which we cannot make these two assumptions.? The first assumption, E(u)
=0, shows that E(u;)=0 for all /, thatis, that the #’s are random variables

with zero expections. The second assumption states that

E(uf) E(uﬂlz) ..--..E(ulun) 0—2 0 0 eevens 0 W
0 g2 0 «oveer 0
E(uul): E(uzul) E(ui).........E(uzun) B EE :
E(uu)) E(uguz)e--E(u?) 0. O 0 .....:02

This latter assumption has two implications: one is E(u%)=0? for all i,
that is, the u; have constant variance which is called homoscedasticity; the
other is E(uu;.5)=0 for s50, that is, the u; values are uncorrelated.

The last implication makes it possible to have a diagonal variance-covariance
matrix. This assumption of uncorrelated residuals and the homoscedasticity
assumption make it possible to show that the estimate f=(X’X)"1X’y has
the smallest variance, and the assumption Al makes the estimate unbiased.
If the residuals are serially correlated, the estimate given by least-squares

method will not be the best estimate. This problem turned out to be very

1) Johnston, Econometric Method, pp. 109~113,
2) A.C. Aitken, “On Least Squares and Linear Combinations of Observations,” Proceedings of the
Royal Society of Edinburgh, Vol. 55, 1935, pp. 42~48.



Rhee: Autocorrelated Residuals 41

important because in many cases, particularly in time series, we often have
autocorrelated residuals.

A very important problem is how to determine whether or not the
autocorrelated residuals are autocorrelated. In 1941, J. Von Neumann calcul-
ated the asymptotic properties of the probability distribution of d:—Z—(Z%;)%~
of a random series #;.» In 1950, J. Durbin and G. S. Watson, usingl the
estimated residuals, calculated the following statistic, azlwtz_——ézt‘—‘lias a me
asure of autocorrelation. If the estimated d is lower than the tlower bound,

the residuals are positively correlated and if the d statistic is larger than the
upper bound, the series is negatively correlated. They calculated the lower

bounds and the upper bounds for different sample sizes and for different num
bers of variables for a 5 per cent level of significance.? H. Theil and A.L.
Nagar developed the Durbin and Watson’s approach further to determine
the upper and lower bounds for the case in which the difference of the exp-
lanatory variables are rather small compared with the range of the corresp-
onding variable itself.®

The recent literature on this subject has been concerned with the method
of obtaining the revised estimates after we find that the residuals are
autocorrelated. First of all most of the writers assume that there exists a
first order Markov scheme among the residuals, that is, the residuals are
correlated such that w,=pu; 1+¢;, where the ¢, has the following properties:
E(e;)=0 for all ¢ and E(etc”s):oi if s=0: E(eer,s)=0 1f 550, With
these assumptions, it has been shown that we can use a transformation
on the original data so that we can have a new series which has the
uncorrelated residuals. Then we can apply the least-squares method to

the transformed data rather than to the original data to get the best linear

1) J. Von Neumann, “Distribution of the Ratio of the Mean Sguare Successive Difference to the
Variance,” Annals of Mathematical Statistics, 1911, pp. 367~95,

2) J. Durbin and G.S. Watson, “Testing for Serial Correlation in Least Squares Regression,”
Biometrica, 1951, pp. 162.

3) H. Theil and A.L. Nagar, “Testing the Independence of Regression Disturbances,” Journal
of the American Statistical Association, 1961, pp. 7TOL
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unbiased estimates. It has also been shown that the transformation matrix
can be derived from the variance-covariance matrix under the assumption of
the first order Markov scheme.

Serial correlation problem also arises in simultaneous equation systems.
Indeed if ordinary least-squares procedures are to be used on each single
equations or on the reduced forms, the absence of serial correlation in the
error terms is critical. In other simultaneous equation techniques such as
two-stage least squares, indirect least squares and three stage least squares,
the same problem can arise.

Fisher has given a considerable treatment of this question.? He shows that

in the system,
yt:Ayt+Byt_1+Czt+ut,

u; is an m-component column vector of disturbances; y,isan n-component
exogenous variables; A,B and C are constant matrices to be estimated; and
(I--A) is nonsingular, A’s diagonal elements are all zeros. “The model is
recursive and does not violate the assumption that in eache quation the dist
urbance term is uncorrelated with the variables which appear therein other
than the one to be explained by that equation.” In addition, u; should be
normally distributed and homoscedastic sf the ordinary least-squares method
is to be valid in the use of having maximum likelihood estimator.? He fur
ther argues that the autocorrelation problem in the simultaneous equation
system is a critical problem to get the maximum likelihood estimate.

Then, in principle, it is also possible to use the transformation procedure
to get rid of the autocorrelation problem in simultaneous equation technique
as well as in the single equation system. The main problem is then

how to get the transformation matrix or the variance-covariance matrix of

1) F.M. Fisher, “Dynamic Structure and Estimation in Economywide Econometric Models,” in
Econometric Model of the United States, ed. by J.S. Duesenberry, G. Fromm, L.R. Klein, and
E. Kuh, 1965, pp. 580~638. =

2) Ibid., pp. 593.
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the disturbances. My main attempt in this paper is to present the recent
propositions on estimating the transformation matrix.

In the first part of this paper I present a procedure to get revised
estimates by using a known variance-covariance matrix of the residuals. In
the second part, I investigate the various procedures of estimating the
transformation matrix. Finally I present some comments on some of the

empirical works in which the revised estimation procedure is used.
2. Least-Squares Estimates with Autocorrelation

Let us assume that we have the single equation, n variable linear model,
y= Xf-+u, where y is a nx1 vector of observations; X is a nxk matrix
of observations on k explanatory wvariables; ( isa kx1 vector of unknown
coefficients; and u is nx 1 disturbance terms.

Suppose now that we cannot make the assumption A2. Then we have

non-diagonal variance-covariance matrix.

1 p preeprty I -p 000"
p 1 ppE 1 -p 1+p* -p---0 0
g _ : : =V,» and V-1l= 1 :
I—p | 1 ¢ : o :
pn—lpn—z,.....l / K 0 0 senees —p 1)

Then the next procedure is to use the transformation of T such that
T’ T=V-! to the original model y= XB+u. Then the original model becomes
Ty=TXB+ Tu.
Accordingly =((TX)' TX "1 (TX)'(Ty)
=(X'T'TX)'X'T'Ty

1) See Johnston, pp. 178.
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— (XI V—IX)—IX/ V—lyl)

o 1 0.0
0-p 10
If we take (n—1) xn matrix, T=
0 0 0 1 ,
2 p 0 Qeeeeen 0
o Lpr  =p  Oeeenn 0
T T—= 0 -p 1+‘?2 S /ALIED 0
0 0 0 Qweeeeel )

So that 7T becomes V-1 except the first element of the first row and
that of the first column, and that ¢? should be unity. To make a simple
and approximate estimation, this T’ matrix transformation is proposed.
Now if we take the simple least-squares estimate from this model,
b=[(TX)"(TX)](TX)'(Ty) and E[(Tu)(Tu) 1=0L, 1.
Then the next problem is the estimation of p where |p|<1.2

(1) Method of H. Theil and Nagar

Let u;, (t=1,:.:,n), denote the residuals from the general linear model
which we defined before. Test these residuals whether the residuals are

autocorrelated or not by the Durbin-Watson d statistics, which is defined as
d— 2 (e —0)?
2

estimate. Suppose that it shows that the residuals are autocorrelated. Then

. These residuals are estimated by the ordinary least-squares

the following procedure can be used to estimate e value in the first-order

Markov scheme. Take the probability limit

Plim d= PHm EQ—u_1)?
Plim E(u;)?
Since E(u;—u;_1) =0, E(ut—ut_l)szar(ut——u,_l), and E(u,;)2=Var(u,).
1) It is known that 8=(X" V-1X)"'X'V-ly is the best unbiased estimator of 8 when the residuals
are autocorrelated with first order Markov scheme. For the proof of this, See Johnston's Econo-

metric Methods, (New York, 1960), pp. 180~184.
2) J. Johnston, Econometric Methods, pp. 178.
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Var (u;—us_q)
Var (u;)

Therefore can be regarded as consistent estimate of d.

Now under the assumption of the first-order Markov scheme,
Var(ug—u, ) =E[ {(uy—us 1) —E(us—u; 1) } 2]
:E[(uz—'unl)z]:E[utz—Zutut_l—i—u,_lZ]

2
=E(u?) —2E(uets 1) +E(ue_12) =29 _—2p0,2

1—p?
_ 2% 5 o 20%(1—p)
- 1~p2 2p[—p2_ 1_p2
2
and Var(u?) =Bl {u—E@)))=E@?) =oi=— %,
Cov(usuy;.1) _ 20%(1—p) 1—0% _ o0
Then, Var (ur) R X o =2(1—p).

Therefore, d can be regarded as a consistent estimate of 2(1—p), i.e.,

d=2(1—p) or p=1-L v

(2) Method of Hildreth and Lu

Let y= XB-+u be the general linear model as before, and define,

Xo1  Xpzrecesreee Xop Jo Uo 71

x X1peesesrses X U
Xk — :11 12 1k yr= J1 u* = 1 n= 72
5 Xp_1,1 Xp_p1,200=e xn—lyk) Jn-1 Up_1 7771

Then we have y*= X*8+u* or u*=y*— X*B, and the first-order Markov
scheme implies u=p w*-7. By substituting u* and u to the latter equation,
we get p=u—pu*=y— XE—py*— X*f) =y —py* — XB—p X*f= (y —py*) —
(X+pX*)8

We know that y is normally distributed with zero mean and ¢,%. Then

1) H. Theil and A.L. Nagar, “Testing the Independence of Regression Disturbances,” Journal
of American Statistical Association, Dec. 1961, pp. 804.
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P(p)=(2 )2 exp{—

1
3020 1

=(2 )‘%‘dn‘"-eXP{“"ﬁf[(y—py*)—(X~pX*)ﬁ]’[(y—py*)
—(X—pX*) 7).

When the samples of y, y*, X, X* are applied to the above density function,

it becomes a likelihood function of p, 8, and ¢:. Therefore, we have,

L= (2003 exp(— 553 [ —pu*) —(X—p XY [(y—py™) — (X—pX*) £])

In order to obtain the maximum likelihood estimates, take logarithm and

drop the constant term involving n. Then we have

log L= — 2100~ [ (y ~py™) —(X—p X" B[ (W—pv*)
—(X—pX*) (]

Now we can readily see that log L* is a function of p, 5, ¢+* so that we

can write,

log L+ (p,B,"0%") = — - logot —— - [(U—py*) —(X—p X BV L(W—py*)
—(X—pX*)B].

Now differenciate log L* with respect to ¢«? and set equal to zero. Solve

for g,> and substituting back to log L*, i.e., log L* is concentrated.

ologl* _ n 1

00+ 2 op

+ (=0,
where S=[(y—py*) —(X—pX*) 81 [(—py*) — (X—p X*) 1.

Then —2no,2=—2S or g,,?:_f_ and

n

log L#(p,8) = —3 10g( % ) —— /= (log S—logn) — -
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2 2 T2 2

_ —nlogS+ nlogn n  _ —nlogS+ n(logzn—l)

Now one can see that minimizing § is equivalent to maximizing log L¥*

and hence L, and we have

log $(0,8) =L —py*) = (X—pX*) BV [(y—py*) — (X—p X*)f3],

which is a function of p and 8. Howeve, if p is given,

-p 1 Qeeee 0
f=(X'V-1X)"t X'V-1y, where V- '=T'Tand T= | 0 £ 10
bbb

Therefore, log § is actually function of p.

Minimizing log S(p) is a complicated task. Therefore, Hildreth and Lu suggest
applying (n—1) xn matrix 7T transformation to the data y and X and
successively substituting values of p between —1 and 1. This procedure will

give the value of log S(p) for different p. Choose p which gives the lowest
log S(p).

(3) Cochrane and Orcutt Method

Define y= Xf+u as before. By simple least-square method,

o
2
we have §=(X’X)"1X'’y Then set y— XB=u, where u= | #;3
i
|/721 f2 " (€1 j
Now define wu;= 7/{:2 . un= | % | ande= |
K : |
N\ Up-1, Uy \ €,

By the first-order Markov scheme, we know that = pu;;+e¢.

By using simple least-square method, we obtain g= (@{1li11) ~W/ 111;.

B 1 Oeeeens 0
Form the T matrix, T= O _ga 1: -0
0 00 -t
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and obtain 3=(X’T'TX)'X’T’Ty. Now put this 8 to the original form
y=XB-+u and obtain #. By using i@, we can obtain § to estimate ﬁ and so
on. Repeat this procedure until the residuals are independent and therefore
no adjustments are necessary.

Cochrane and Orcutt also suggest the use of the first difference on the
assumption that p is approximately one. The first order Markov scheme,

uy=pu;_1+€ becomes u;=u,_,1+4¢€ if p=1. We then have u;,—u,;_;=e¢,. By
substituting u,—2;—fo—0F1X: and u1=%;_1—Fo—B1X;_1, we have,
Yi—Bo—BiXs—Yi a4+ Lo+ BiXi1=¢€
or Vi—Y,1=5Xi—BhXi1te
or Yi—T1= (X, —Xo_1) Bi+er

Set V,—Y,1=7*% X,—X,_1=X,*. Then we have y,*— X;*B;+¢;, where ¢,
is independently and normally distributed with mean zero and g2 We can

now use simple least-squares method.

(4) Durbin’s Two-Stage Method

&

Let us denote the general linear model as Y, =3 3,X;;+u;, t=1,2,--- n. And
=1

assume the first-order Markov scheme; u,=pu;_1+¢€,. By substituting the

13
latter equation into the first, we have ¥,=3 8, X+ pu:_1+¢..
=1
. k
Since u; 1=%;.1—Y B;Xii1,
=1
& k
thg ﬁiXit‘i—P(Tt-l‘j_Xl: BiXi-1) +e

k k k
or Tt‘pyt_l—_j; ﬂi&t-pgﬁi)(it-l_{’et:Zlﬁi(‘Xvit_pXit—l) + €.

Now set V.=%,—pY; 1, Wi=X;i—pX;1.
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First compute the least-squares regressions of 2, on ¥,_; and that of X}, on
X1 for all i. This gives us the values of —p, and with that one can

i

compute V, and W, for all i.

3
Then form V,=38;W;+¢ and obtain §; by the least-squares method.
ic1

It is very interesting to see how this autocorrelation problem arises in the
distributed lag models. Z. Griliches made an interesting study on this subject.?

He considers the simple model first:

Ye=Vyi1tuy,

U= pUs 1€

where ¢; is an independently distributed random variable with mean zero.
In other words, we have autocorrelated residuals in the model as specified

in the second equation.
Then we have y,=(W+p)y:i1—vpy:_2te:.

Now suppose that we have y,=Cy,_1+u; and estimate the C without
considering autocorrelation problem. Then the impact of autocorrelation is
the effect of an omitted variable y;_» on the coefficient of the included
variable y,_;. Then he derives

E(C—y)= pl(iv;) 2
It is obvious from this result that v will be over estimated if p is positive
and vice versa. The result of bias for different v and p is given by the

writer as follow:

Y 0 Approximate bias:
. A .09
.2 .5 .44

1) Zvi Griliches, “A Note on Serial Correlation Bias in Estimates of Distributed Lags,” Econometri-
ca, Vol. 29, 1961, pp. 65~73.
2) Ibid., pp. €6.
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s

.2 .8 . 66
.5 .8 .43
.5 .5 .30
.5 ! .07
.8 .1 .03
. 8 .5 13
.8 .8 .18

3. Empirical Works on Time Series with Autocorrelated Residuals

(1) Jorgensen and Eisner

Even though the absence of serial correlation is critical to most estimation
procedures used in economics, few studies have given systematic treatment
to the subject. A recent volume, Econometric Model of the United States, has
been examined to see how the writers have treated the question of serial
correlation of thé residuals. Only two writers’ treatments are given below.

Jorgensen formulates the theory of investment behavior as I, =IF,+IR,,
where I, is the total investment; IE, is the investment for capital expansion;
IR, is the investment for replacement. He further specifies IE,=u,IN;}u;
IN;_1+..., where IV, is the level of projects initiated in period ¢. Then he
sets IE,=u(0)K;—K;_,, where K 1is the desired investment and u(8) =u,~+u,0
+uxf?+..., being the lag operator. He also formulates IR,=¢K,_1, where the

0 is the rate of depreciation and K, is the actual capital stock. Therefore

the total investment function is,
L=u(0)Ke—K¢_,+0K, 1.V
He compares his investment function I; and the ‘naive’ models I;,=1, 1,
and IA,.»=14,,1, where I,, I4,,», and IA,,; represent actual investment,
anticipated investment two quarters hence, and anticipated investment one
quarter hence respectively. He concludes that his model gives less autocorre-

lation of the residuals than the naive models, saying that the Von Neumann

1)' D.W. Jorgensen, “Anticipations and Investment Behavior,” in Econometric Model of the
United States, ed. by J.S. Duesenberry, G. Fromm, L.R. Klein, and E. Kuh, 1963, pp. 52.
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ratios of his model is “clearly within the region of acceptance for the null
hypothesis of zero autocorrelation; for the naive models, the Von Neumann
ratios give very clear evidence of high positive autocorrelation.” In fact he
is saying that for his model there is no autocorrelation problem.

Eisner suggests that the error in the prediction given by his model may
be due to the autocorrelation among the residuals. He says that the Durbin-
Watson ratios frequently reveal that the residuals from the estimating
equations are positively correlated. He suggests that the revised estimation
procedure will give more accurate prediction, but as many other empirical

workers, he does not use the more complicated procedure.

(2) Cochrane and Orcutt

They argue that the systematic residuals may arise because of a faulty
choice of the form of relationship assumed to exist between economic varia-
sble. The residuals may be autocorrelated due to the omission of wvariables,
and simply because the most important economic time series are autocorrel-
ated. Whatever the reasons are, Cochrane and Orcutt conclude that most

current formulations of economic relations are highly autocorrelated such

that it is not desirable to use the simple least-squares method of estimation.?

They tested the empirical works done by Lawrence R. Klein, M.A.
Girshick and T. Haavelmo, and R. Stone to see whether the residuals are
autocorrelated or not. Cochrane and Orcutt used the equations, p:l———%.d
where d:-as-j—, ai’:'—‘Nil__l— > (X1 —X03, 32:7172 (X:—X)? This equation
is developed inthe earlier part of this paper.®

The probability distribution of d2/s? for a random series has been tabulated

by J. von Neumann and B.S. Hart.®

Containing Autocorrelated Error Terms,” Journal of the American Statistical Association, Vol
14, 1949, pp. 36.

2) See page 5 of this paper.
3) B.S. Hart and J. von Neumann, “The Tabulation of the Probability for the Ratio of the

Mean Square Successive Difference to the Variance,” Annals of Mathematical Statistics, Vol.13,
pp. 207-214.
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Using this probability distribution, Cochrane and Orcutt tests whether the
economic residuals are random or correlated each other. The results of the

test at five per cent level of significance and 2.5 percent level of significan-

ce are as follow:

Number of

Source of residuals years Number of parameters Total
3 4 5 6

Klein-Econometrica® 22 2 7 2 1 12
Klein-Mimeographed study?® 20 1 7 1 — 9
Girshick and Haavelme® 20 2 2 I — 5
Stone® 19 4 6 6 1 17

Total 9 22 10 2 43
P(d2/s2>Fk)=0.025 7 5 4 — 16
P(d?/s*>Fk)=0.05 8 10 4 — 22

These results indicate that out of 43 series 16 are significantly different
from a random series at the 2.5 per cent significant level of test and 22
series are significantly different from random series at 5 per cent level.
Therefore they conclude that in many cases the assumption of random error

terms is not justified.

(3) Johnston’s Empirical Work
He used the following two time seires to show the existence of autocorre-
lation and the use of transformation to get the revised estimates.
By ordinary least-squares method, he gets ¥=7.0+0,9025X,
where 0. 9025:%’%’; and 7.0=1—0, 9025X.

Then we have

~
#=Y—% and A=, 1—u,.

1) L.R. Klein, “The Use of Econometric Models as a Guide to Economic Policy,” Econometrica,

2) His unpublished work distributed by the Cowles Commission.

3) Girshick and Haavelmo, “Statistical Analysis of the Demand for Food: Examples of Simultan
eous Estimation of Structural Equation,” Econometrica, 1947, pp. 79-110.

4) R. Stone, “The Analysis of Market Demand,” Journal of Rogal Statistical Society 1945, pp.

289-301.
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Personal Disposable Income and Personal Consumpiton of U.S.

(Billions of Dollars, constant 1954 prices)

Year Consumption Income
Y X
1948 199 212
1949 204 214
1950 216 231
1951 218 237
1952 224 244
1953 235 255
1954 238 257
1955 256 273
1956 264 284
1957 270 290

Now we can compute the Durbin-Watson d statistic, d= &{:’@2_:1, 07.

Since the expected wvalue of d is 2,11,V Johnston concludes that 1,07 is

rather low and therefore indicate of positive autocorrelation.

Assuming that there exists the first-order Markov scheme among the resid-

uals, i.e., #,=pft;_1+e;, we can estimate p by ordinary least-squares method.

Then this leads us to define the transformed variable as
Y/=7,—-0.457Y,_,
X/ =X,—0.457X,_..
Applying the ordinary least-squares to the transformed variables, 17’ and

X', Johnston gets ¥,’=2,640, 9114X,’. Then we also have the transformed

residuals, #,". The following shows all the computation results.?®

1) Johnston, pp. 198.
2) Ibid., pp. 199.
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Year Y X Y, u, Au,
1949 - 113.1 117.1 109.3 3.8

1950 122, 8 133, 2 124.0 —1.2 —5.0
1951 119.3 131. 4 122. 4 —3.1 —1.9
1952 124.4 135.7 126.3 —~1.9 1.2
1953 132.6 143.5 133. 4 —0.8 11
1954 130.6 140.5 130.7 0.1 0.7
1955 147, 2 155.6 144, 4 2.8 2.9
1956 147.0 159.2 147.7 —0.7 —3.5
1957 149. 4 160. 2 148.6 0.8 1.5

Now compute the d value based on the #/and Aa,’.

’ An)?
d :%—;—,‘2—«_1.41.

Therefore d’ is much closer to the expected value of a random residuals

than the original d. This then indicates that the transformed residuals are

less indicative of positive autocorrelation than the residuals from the original
variables; it is much safer to estimate the coefficients from the transformed

data than the original data.
(4) Hildreth and Lu’'s work

As we studied Hildreth and Lu’s method of estimating p in the second
part of this paper (pp.120), they have contributed a significant improvement
of this subject. They studied a number of empirical works done by various
writers in econometric studies. The following summary is one of their
studies.

In 1955, K.W. Meinken made an econometric study of the wheat industry
relating the world price to the world supply. They obtained P,=142—0. 036
Sy+1.11,, where P, is the average wholesale price of wheat at Liverpool,
England, per bushel, converted to U.S. currency at par, in cents; S, is

world production of wheat plus stocks, about August; I, is the index of
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wholesale prices of 45 raw materials in England (1910—40=100).v
Hildreth and Lu made the Durbin and Watson’s test of the residuals;
they obtained the lower and upper bounds for 10 per cent significance level
as 0.95 and 1.54. They calculated d=0.8922, and therefore rejected the
hypothesis of independent residuals. Then they tested different value of 0
ranging from 1 to —1 to find out the p which gives the lowest log S(p).?

They found out that p=0, 64 gives the lowest log S(p) and therefcre they

set ‘520, 64. Then they used the tranformation procedure and obtained the

new coefficients, the result being P,=170, 2971 —0. 0454398 Su-+1.3123871,.
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