• 제목/요약/키워드: bernoulli-euler beam

검색결과 427건 처리시간 0.023초

회전하는 보의 유한요소해석을 위한 유리형상함수의 확장 (Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams)

  • 김용우;정재호
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.591-598
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfy the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfy the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beams.

변분법을 이용한 축방향으로 움직이는 보의 스펙트럴 요소 모델링 (Dynamics of an Axially Moving Bernoulli-Euler Beam : Variational Method-Based Spectral Element Modeling)

  • 최정식;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.831-834
    • /
    • 2008
  • The spectral element model is known to provide very accurate structural dynamic characteristics, while reducing the number of degree-of-freedom to resolve the computational and cost problems. Thus, the spectral element model with variational method for an axially moving Bernoulli-Euler beam subjected to axial tension is developed in the present paper. The high accuracy of the spectral element model is the verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension the vibration characteristics, wave characteristics, and the static and dynamic stabilities of a moving beam are investigated.

  • PDF

Free vibration of AFG beams with elastic end restraints

  • Bambaeechee, Mohsen
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.403-432
    • /
    • 2019
  • Axially functionally graded (AFG) beams are a new class of composite structures that have continuous variations in material and/or geometrical parameters along the axial direction. In this study, the exact analytical solutions for the free vibration of AFG and uniform beams with general elastic supports are obtained by using Euler-Bernoulli beam theory. The elastic supports are modeled with linear rotational and lateral translational springs. Moreover, the material and/or geometrical properties of the AFG beams are assumed to vary continuously and together along the length of the beam according to the power-law forms. Accordingly, the accuracy, efficiency and capability of the proposed formulations are demonstrated by comparing the responses of the numerical examples with the available solutions. In the following, the effects of the elastic end restraints and AFG parameters, namely, gradient index and gradient coefficient, on the values of the first three natural frequencies of the AFG and uniform beams are investigated comprehensively. The analytical solutions are presented in tabular and graphical forms and can be used as the benchmark solutions. Furthermore, the results presented herein can be utilized for design of inhomogeneous beams with various supporting conditions.

On forced and free vibrations of cutout squared beams

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.643-655
    • /
    • 2019
  • Perforation and cutouts of structures are compulsory in some modern applications such as in heat exchangers, nuclear power plants, filtration and microeletromicanical system (MEMS). This perforation complicates dynamic analyses of these structures. Thus, this work tends to introduce semi-analytical model capable of investigating the dynamic performance of perforated beam structure under free and forced conditions, for the first time. Closed forms for the equivalent geometrical and material characteristics of the regular square perforated beam regular square, are presented. The governing dynamical equation of motion is derived based on Euler-Bernoulli kinematic displacement. Closed forms for resonant frequencies, corresponding Eigen-mode functions and forced vibration time responses are derived. The proposed analytical procedure is proved and compared with both analytical and numerical analyses and good agreement is noticed. Parametric studies are conducted to illustrate effects of filling ratio and the number of holes on the free vibration characteristic, and forced vibration response of perforated beams. The obtained results are supportive in mechanical design of large devices and small systems (MEMS) based on perforated structure.

On the absolute maximum dynamic response of a beam subjected to a moving mass

  • Lotfollahi-Yaghin, Mohammad Ali;Kafshgarkolaei, Hassan Jafarian;Allahyari, Hamed;Ghazvini, Taher
    • Structural Engineering and Mechanics
    • /
    • 제54권1호
    • /
    • pp.55-67
    • /
    • 2015
  • Taking the mid-span/center-point of the structure as the reference point of capturing the maximum dynamic response is very customary in the available literature of the moving load problems. In this article, the absolute maximum dynamic response of an Euler-Bernoulli beam subjected to a moving mass is widely investigated for various boundary conditions of the base beam. The response of the beam is obtained by utilizing a robust numerical method so-called OPSEM (Orthonormal Polynomial Series Expansion Method). It is underlined that the absolute maximum dynamic response of the beam does not necessarily take place at the mid-span of the beam and thus the conventional analysis needs modifications. Therefore, a comprehensive parametric survey of the base beam absolute maximum dynamic response is represented in which the contribution of the velocity and weight of the moving inertial objects are scrutinized and compared to the conventional version (maximum at mid-span).

Numerical solution of beam equation using neural networks and evolutionary optimization tools

  • Babaei, Mehdi;Atasoy, Arman;Hajirasouliha, Iman;Mollaei, Somayeh;Jalilkhani, Maysam
    • Advances in Computational Design
    • /
    • 제7권1호
    • /
    • pp.1-17
    • /
    • 2022
  • In this study, a new strategy is presented to transmit the fundamental elastic beam problem into the modern optimization platform and solve it by using artificial intelligence (AI) tools. As a practical example, deflection of Euler-Bernoulli beam is mathematically formulated by 2nd-order ordinary differential equations (ODEs) in accordance to the classical beam theory. This fundamental engineer problem is then transmitted from classic formulation to its artificial-intelligence presentation where the behavior of the beam is simulated by using neural networks (NNs). The supervised training strategy is employed in the developed NNs implemented in the heuristic optimization algorithms as the fitness function. Different evolutionary optimization tools such as genetic algorithm (GA) and particle swarm optimization (PSO) are used to solve this non-linear optimization problem. The step-by-step procedure of the proposed method is presented in the form of a practical flowchart. The results indicate that the proposed method of using AI toolsin solving beam ODEs can efficiently lead to accurate solutions with low computational costs, and should prove useful to solve more complex practical applications.

유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(I) : 일반적인 접근법 (Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(I) : General Approach)

  • 박찬종;박태원
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.165-175
    • /
    • 2000
  • In recent years, it becomes a very important issue to consider the mechanical systems such as high-speed vehicles and railway trains moving on elastic beam structures. In this paper, a general approach, which can predict the dynamic behavior of constrained mechanical system and elastic beam structure, is proposed. Also, various supporting conditions of a foundation support are considered for the elastic beam structures. The elastic structure is assumed to be a nonuniform and linear Bernoulli-Euler beam with proportional damping effect. Combined Differential-Algebraic Equations of motion are derived using multibody dynamics theory and Finite Element Method. The proposed equations of motion can be solved numerically using generalizd coordinate partitioning method and Predictor-Corrector algorithm, which is an implicit multi-step integration method.

  • PDF

An inverse approach for the calculation of flexibility coefficient of open-side cracks in beam type structures

  • Fallah, N.;Mousavi, M.
    • Structural Engineering and Mechanics
    • /
    • 제41권2호
    • /
    • pp.285-297
    • /
    • 2012
  • An inverse approach is presented for calculating the flexibility coefficient of open-side cracks in the cross sectional of beams. The cracked cross section is treated as a massless rotational spring which connects two segments of the beam. Based on the Euler-Bernoulli beam theory, the differential equation governing the forced vibration of each segment of the beam is written. By using a mathematical manipulation the time dependent differential equations are transformed into the static substitutes. The crack characteristics are then introduced to the solution of the differential equations via the boundary conditions. By having the time history of transverse response of an arbitrary location along the beam, the flexibility coefficient of crack is calculated. The method is applied for some cracked beams with solid rectangular cross sections and the results obtained are compared with the available data in literature. The comparison indicates that the predictions of the proposed method are in good agreement with the reported data. The procedure is quite general so as to it can be applicable for both single-side crack and double-side crack analogously. Hence, it is also applied for some test beams with double-side cracks.

Rotating effects on hygro-mechanical vibration analysis of FG beams based on Euler-Bernoulli beam theory

  • Ehyaei, Javad;Farazmandnia, Navid;Jafari, Ali
    • Structural Engineering and Mechanics
    • /
    • 제63권4호
    • /
    • pp.471-480
    • /
    • 2017
  • This paper investigates free vibration characteristics of a rotating functionally graded (FG) beam in hygro environments. In the present study, material properties of the FG beam vary continuously through thickness direction according to the power-law which approximates material properties of FG beam. The governing differential equations of motion are derived based on Euler-Bernoulli beam theory and using the Hamilton's principle which solved utilizing a semi-analytical technique called the Differential Transform Method (DTM). In order to verify the competency and accuracy of the current analysis, a comparative study with previous researches are performed and good agreement is observed. Influences of Several important parameters such as power-law exponent, hygro environment, rotational speed and slenderness ratio on natural frequencies are investigated and discussed in detail. It is concluded that these effects play significant role on dynamic behavior of rotating FG beam in the hygro environments. Numerical results are tabulated in several tables and figures that can be serving as benchmarks for future analyses of rotating FG beams in the hygro environments.

On the natural frequencies and mode shapes of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Lin, Hsien-Yuan;Tsai, Ying-Chien
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.701-717
    • /
    • 2006
  • In the existing reports regarding free transverse vibrations of the Euler-Bernoulli beams, most of them studied a uniform beam carrying various concentrated elements (such as point masses, rotary inertias, linear springs, rotational springs, spring-mass systems, ${\ldots}$, etc.) or a stepped beam with one to three step changes in cross-sections but without any attachments. The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of the multiple-step Euler-Bernoulli beams carrying a number of lumped masses and rotary inertias. First, the coefficient matrices for an intermediate lumped mass (and rotary inertia), left-end support and right-end support of a multiple-step beam are derived. Next, the overall coefficient matrix for the whole vibrating system is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact natural frequencies and the associated mode shapes of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting the corresponding values of integration constants into the associated eigenfunctions, respectively. The effects of distribution of lumped masses and rotary inertias on the dynamic characteristics of the multiple-step beam are also studied.