Browse > Article
http://dx.doi.org/10.12989/scs.2019.32.5.643

On forced and free vibrations of cutout squared beams  

Almitani, Khalid H. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
Abdelrahman, Alaa A. (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University)
Eltaher, Mohamed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
Publication Information
Steel and Composite Structures / v.32, no.5, 2019 , pp. 643-655 More about this Journal
Abstract
Perforation and cutouts of structures are compulsory in some modern applications such as in heat exchangers, nuclear power plants, filtration and microeletromicanical system (MEMS). This perforation complicates dynamic analyses of these structures. Thus, this work tends to introduce semi-analytical model capable of investigating the dynamic performance of perforated beam structure under free and forced conditions, for the first time. Closed forms for the equivalent geometrical and material characteristics of the regular square perforated beam regular square, are presented. The governing dynamical equation of motion is derived based on Euler-Bernoulli kinematic displacement. Closed forms for resonant frequencies, corresponding Eigen-mode functions and forced vibration time responses are derived. The proposed analytical procedure is proved and compared with both analytical and numerical analyses and good agreement is noticed. Parametric studies are conducted to illustrate effects of filling ratio and the number of holes on the free vibration characteristic, and forced vibration response of perforated beams. The obtained results are supportive in mechanical design of large devices and small systems (MEMS) based on perforated structure.
Keywords
free vibration; forced vibration; dynamical behavior; perforation; Euler-Bernoulli beam; semi-analytical method;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley & Sons.
2 Rastgoo, A., Ebrahimi, F. and Dizaji, A.F. (2006), "On the existence of periodic solution for equation of motion of thick beams having arbitrary cross section with tip mass under harmonic support motion", Int. J. Mech. Mater. Des., 3(1), 29-38. https://doi.org/10.1007/s10999-006-9011-1   DOI
3 Rebeiz, G.M. (2004), RF MEMS: Theory, Design, and Technology, John Wiley & Sons.
4 Sedighi, H.M. (2014), "Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory", Acta Astronautica, 95, 111-123. https://doi.org/10.1016/j.actaastro.2013.10.020   DOI
5 De Pasquale, G., Veijola, T. and Soma, A. (2010), "Modelling and validation of air damping in perforated gold and silicon MEMS plates", J. Micromech. Microeng., 20(1), 015010. https://doi.org/10.1088/0960-1317/20/1/015010   DOI
6 Driz, H., Benchohra, M., Bakora, A., Benachour, A., Tounsi, A. and Bedia, E.A.A. (2018), "A new and simple HSDT for isotropic and functionally graded sandwich plates", Steel Compos. Struct., Int. J., 26(4), 387-405. https://doi.org/10.12989/scs.2018.26.4.387
7 Duncan, J.P. and Upfold, R.W. (1963), "Equivalent elastic properties of perforated bars and plates", J. Mech. Eng. Sci., 5(1), 53-65. https://doi.org/10.1243/JMES_JOUR_1963_005_009_02   DOI
8 Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016   DOI
9 Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014a), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Computat., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028   DOI
10 Eltaher, M.A., Hamed, M.A., Sadoun, A.M. and Mansour, A. (2014b), "Mechanical analysis of higher order gradient nanobeams", Appl. Math. Computat., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076   DOI
11 Mali, K.D. and Singru, P.M. (2015), "Determination of modal constant for fundamental frequency of perforated plate by Rayleigh's method using experimental values of natural frequency", Int. J. Acoust. Vib., 20(3), 177-184.
12 Tu, W.H., Chu, W.C., Lee, C.K., Chang, P.Z. and Hu, Y.C. (2013), "Effects of etching holes on complementary metal oxide semiconductor-microelectromechanical systems capacitive structure", J. Intel. Mater. Syst. Struct., 24(3), 310-317. https://doi.org/10.1177/1045389X12449917   DOI
13 Wang, Y., Feng, C., Zhao, Z. and Yang, J. (2018), "Buckling of graphene platelet reinforced composite cylindrical shell with cutout", Int. J. Struct. Stabil. Dyn., 18(3), 1850040. https://doi.org/10.1142/S0219455418500402   DOI
14 Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64. https://doi.org/10.12989/anr.2016.4.1.051
15 Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018a), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technolog., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3   DOI
16 Yahiaoui, M., Tounsi, A., Fahsi, B., Bouiadjra, R.B. and Benyoucef, S. (2018), "The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams", Struct. Eng. Mech., Int. J., 68(1), 53-66. https://doi.org/10.12989/sem.2018.68.1.053
17 Yettram, A.L. and Brown, C.J. (1985), "The elastic stability of square perforated plates", Comput. Struct., 21(6), 1267-1272. https://doi.org/10.1016/0045-7949(85)90180-4   DOI
18 Mali, K.D. and Singru, P.M. (2013), "Determination of the fundamental frequency of perforated rectangular plates: Concentrated negative mass approach for the perforation", Adv. Acoust. Vib. http://dx.doi.org/10.1155/2013/972409
19 Mirzabeigy, A. and Madoliat, R. (2019), "A Note on Free Vibration of a Double-beam System with Nonlinear Elastic Inner Layer", J. Appl. Computat. Mech., 5(1), 174-180. https://doi.org/10.22055/JACM.2018.25143.1232
20 Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., Int. J., 59(3), 431-454. https://doi.org/10.12989/sem.2016.59.3.431   DOI
21 Humar, J. (2012), Dynamics of Structures, CRC press.
22 Sedighi, H.M., Shirazi, K.H. and Noghrehabadi, A. (2012), "Application of recent powerful analytical approaches on the non-linear vibration of cantilever beams", Int. J. Nonlinear Sci. Numer. Simul., 13(7-8), 487-494. https://doi.org/10.1515/ijnsns-2012-0030
23 Guha, K., Laskar, N.M., Gogoi, H.J., Borah, A.K., Baishnab, K.L. and Baishya, S. (2017), "Novel analytical model for optimizing the pull-in voltage in a flexured MEMS switch incorporating beam perforation effect", Solid-State Electronics, 137, 85-94. https://doi.org/10.1016/j.sse.2017.08.007   DOI
24 Guha, K., Laskar, N.M., Gogoi, H.J., Baishnab, K.L. and Rao, K.S. (2018), "A new analytical model for switching time of a perforated MEMS switch", Microsyst. Technol., 1-10. https://doi.org/10.1007/s00542-018-3803-8
25 Heidari, A., Keikha, R., Haghighi, M.S. and Hosseinabadi, H. (2018), "Numerical study for vibration response of concrete beams reinforced by nanoparticles", Struct. Eng. Mech., Int. J., 67(3), 311-316. https://doi.org/10.12989/sem.2018.67.3.311
26 Hieu, D. and Hai, N.Q. (2019), "Free vibration analysis of quintic nonlinear beams using equivalent linearization method with a weighted averaging", J. Appl. Computat. Mech., 5(1), 46-57. https://doi.org/10.22055/JACM.2018.24919.1217
27 Inman, D.J. (2014), Engineering Vibration, (4th Ed.), Pearson Education, Pearson, London, UK.
28 Jeong, K.H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1-2), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029   DOI
29 Jeong, K.H., Ahn, B.K. and Lee, S.C. (2001), "Modal analysis of perforated rectangular plates in contact with water", Struct. Eng. Mech., Int. J., 12(2), 189-200. https://doi.org/10.12989/sem.2001.12.2.189   DOI
30 Guha, K., Kumar, M., Agarwal, S. and Baishya, S. (2015), "A modified capacitance model of RF MEMS shunt switch incorporating fringing field effects of perforated beam", Solid-State Electronics, 114, 35-42. https://doi.org/10.1016/j.sse.2015.07.008   DOI
31 Abdelbari, S., Amar, L.H.H., Kaci, A. and Tounsi, A. (2018), "Single variable shear deformation model for bending analysis of thick beams", Struct. Eng. Mech., Int. J., 67(3), 291-300. https://doi.org/10.12989/sem.2018.67.3.291
32 Akbarzade, M. and Farshidianfar, A. (2017), "Nonlinear dynamic analysis of an elastically restrained cantilever tapered beam", J. Appl. Mech. Tech. Phys., 58(3), 556-565. https://doi.org/10.1134/S002189441703021X   DOI
33 Bendali, A., Labedan, R., Domingue, F. and Nerguizian, V. (2006), May), "Holes effects on RF MEMS parallel membranes capacitors", Proceedings of Canadian Conference on Electrical and Computer Engineering, CCECE'06, Ottawa, Canada, May, pp. 2140-2143.
34 Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018b), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6   DOI
35 Benguediab, S., Tounsi, A., Abdelaziz, H.H. and Meziane, M.A.A. (2017), "Elasticity solution for a cantilever beam with exponentially varying properties", J. Appl. Mech. Tech. Phys., 58(2), 354-361. https://doi.org/10.1134/S0021894417020213   DOI
36 Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Int. J., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521   DOI
37 Berggren, S.A., Lukkassen, D., Meidell, A. and Simula, L. (2003), "Some methods for calculating stiffness properties of periodic structures", Applicat. Math., 48(2), 97-110. https://doi.org/10.1023/A:1026090026531   DOI
38 Loughlan, J. and Hussain, N. (2018), "The post-buckled failure of steel thin plate shear webs with stiffened centrally located cutouts", Thin-Wall. Struct., 128, 80-91. https://doi.org/10.1016/j.tws.2017.07.015   DOI
39 Kim, J.H., Jeon, J.H., Park, J.S., Seo, H.D., Ahn, H.J. and Lee, J.M. (2015), "Effect of reinforcement on buckling and ultimate strength of perforated plates", Int. J. Mech. Sci., 92, 194-205. https://doi.org/10.1016/j.ijmecsci.2014.12.016   DOI
40 Lee, Y.Y. (2016), "The effect of leakage on the sound absorption of a nonlinear perforated panel backed by a cavity", Int. J. Mech. Sci., 107, 242-252. https://doi.org/10.1016/j.ijmecsci.2016.01.019   DOI
41 Luschi, L. and Pieri, F. (2012), "A simple analytical model for the resonance frequency of perforated beams", Procedia Eng., 47, 1093-1096. https://doi.org/10.1016/j.proeng.2012.09.341   DOI
42 Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004   DOI
43 Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuators B: Chem., 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085   DOI
44 Chen, D.W. and Liu, T.L. (2006), "Free and forced vibrations of a tapered cantilever beam carrying multiple point masses", Structural Engineering and Mechanics, 23(2), 209-216.   DOI
45 Chen, X. and Meguid, S.A. (2017), "Dynamic behavior of microresonator under alternating current voltage", Int. J. Mech. Mater. Des., 13(4), 481-497. https://doi.org/10.1007/s10999-016-9354-1   DOI
46 Cheng, B. and Zhao, J. (2010), "Strengthening of perforated plates under uniaxial compression: Buckling analysis", Thin-Wall. Struct., 48(12), 905-914. https://doi.org/10.1016/j.tws.2010.06.001   DOI
47 She, G.L., Ren, Y.R., Xiao, W.S. and Liu, H.B. (2018a), "Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations", Struct. Eng. Mech., Int. J., 66(6), 729-736. https://doi.org/10.12989/sem.2018.66.6.729
48 Sedighi, H.M., Koochi, A., Daneshmand, F. and Abadyan, M. (2015a), "Non-linear dynamic instability of a double-sided nano-bridge considering centrifugal force and rarefied gas flow", Int. J. Non-Linear Mech., 77, 96-106. https://doi.org/10.1016/j.ijnonlinmec.2015.08.002   DOI
49 Sedighi, H.M., Shirazi, K.H. and Changizian, M. (2015b), "Effect of the amplitude of vibrations on the pull-in instability of double-sided actuated microswitch resonators", J. Appl. Mech. Tech. Phys., 56(2), 304-312. https://doi.org/10.1134/S0021894415020169   DOI
50 Shanmugam, N.E., Thevendran, V. and Tan, Y.H. (1999), "Design formula for axially compressed perforated plates", Thin-Wall. Struct., 34(1), 1-20. https://doi.org/10.1016/S0263-8231(98)00052-4   DOI
51 She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018b), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133(9), 368. https://doi.org/10.1140/epjp/i2018-12196-5   DOI
52 Yuan, W.B., Yu, N.T. and Li, L.Y. (2017), "Distortional buckling of perforated cold-formed steel channel-section beams with circular holes in web", Int. J. Mech. Sci., 126, 255-260. https://doi.org/10.1016/j.ijmecsci.2017.04.001   DOI
53 Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409   DOI
54 Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Bedia, E.A.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., Int. J., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467   DOI
55 She, G.L., Ren, Y.R. and Yan, K.M. (2019a), "On snap-buckling of porous FG curved nanobeams", Acta Astronautica, 161, 475-484. https://doi.org/10.1016/j.actaastro.2019.04.010   DOI
56 She, G.L., Ren, Y.R. and Yan, K.M. (2019b), "Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems", Steel Compos. Struct., Int. J., 31(6), 641-653. https://doi.org/10.12989/scs.2019.31.6.641
57 Srivastava, A.K.L., Datta, P.K. and Sheikh, A.H. (2003), "Prediction of Natural Frequencies of Stiffened Plates with Cutouts Subjected to In-plane Forces", In: Structural Stability And Dynamics: With CD-ROM (Volume 1), pp. 278-282. https://doi.org/10.1142/9789812776228_0036
58 Brown, C.J. and Yettram, A.L. (1986), "The elastic stability of square perforated plates under combinations of bending, shear and direct load", Thin-Wall. Struct., 4(3), 239-246. https://doi.org/10.1016/0263-8231(86)90005-4   DOI
59 Abbasnejad, B. and Rezazadeh, G. (2012), "Mechanical behavior of a FGM micro-beam subjected to a nonlinear electrostatic pressure", Int. J. Mech. Mater. Des., 8(4), 381-392. https://doi.org/10.1007/s10999-012-9202-x   DOI
60 Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., Int. J., 64(2), 145-153. https://doi.org/10.12989/sem.2017.64.2.145
61 Rebeiz, G.M. (2004), RF MEMS: Theory, Design, and Technology, John Wiley & Sons.
62 Duncan, J.P. and Upfold, R.W. (1963), "Equivalent elastic properties of perforated bars and plates", J. Mech. Eng. Sci., 5(1), 53-65. https://doi.org/10.1243/JMES_JOUR_1963_005_009_02   DOI
63 Rahman, M., Hasan, A.S. and Yeasmin, I.A. (2019), "Modified Multi-level Residue Harmonic Balance Method for Solving Nonlinear Vibration Problem of Beam Resting on Nonlinear Elastic Foundation", J. Appl. Computat. Mech., 5(4), 627-638. https://doi.org/10.22055/JACM.2018.26729.1352
64 Patel, S.N., Datta, P.K. and Sheikh, A.H. (2010), "Effect of harmonic in-plane edge loading on dynamic stability of stiffened shell panels with cutouts", Int. J. Appl. Mech., 2(4), 759-785. https://doi.org/10.1142/S1758825110000743   DOI
65 Pedersen, M., Olthuis, W. and Bergveld, P. (1996), "On the mechanical behaviour of thin perforated plates and their application in silicon condenser microphones", Sensors Actuators A: Phys., 54(1-3), 499-504. https://doi.org/10.1016/S0924-4247(95)01189-7   DOI
66 Kerid, R., Bourouina, H., Yahiaoui, R., Bounekhla, M. and Aissat, A. (2019), "Magnetic field effect on nonlocal resonance frequencies of structure-based filter with periodic square holes network", Physica E: Low-dimens. Syst. Nanostruct., 105, 83-89. https://doi.org/10.1016/j.physe.2018.05.021   DOI