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ABSTRACT 
The spectral element model is known to provide very accurate structural dynamic characteristics, while reducing the 

number of degree-of-freedom to resolve the computational and cost problems. Thus, the spectral element model with 
variational method for an axially moving Bernoulli-Euler beam subjected to axial tension is developed in the present 
paper. The high accuracy of the spectral element model is the verified by comparing its solutions with the conventional 
finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension the vibration 
characteristics, wave characteristics, and the static and dynamic stabilities of a moving beam are investigated. 
 
--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
1.  Introduction 

The moving belts used in power transmission are an example of a class of axially moving structures. Axially moving 

speed may significantly affects the dynamic characteristics of moving structures even at low speed, giving rise to the 

variation of natural frequencies and complex modes. Above a certain critical moving speed, axially moving structures 

may experience severe vibrations, static instability, or dynamic instability to result in structural failures. Thus, it is 

important to accurately predict the dynamic characteristics and instability of such structures in advance for the 

successful analysis and design of a broad class of technological devices. The literature regarding axially moving 

structures is quite wide, and an extensive literature overview can be found in Wickert and Mote (1988). 

The axially moving beam-like one-dimensional structure with flexural rigidity has been traditionally represented by 

the Euler-Bernoulli beam (BE-beam) model or Timoshenko beam model. The solutions of the equations of motion for 

the moving beam models have been obtained by various solution techniques including the Galerkin’s method assumed 

mode method (Lee, 1993), finite element method (FEM), Green’s function method, transfer function method (Riedel 

and Tan, 1998), perturbation method (Öz, 2001), and the Laplace transform method .  

In the literature (Doyle, 1997; Lee and Lee, 1998; Lee et. al., 2000, 2001), it has been well recognized that the 

spectral element method (SEM) is an exact solution method for the dynamic analysis of structures. In SEM, the spectral  

element matrix (or exact dynamic stiffness matrix) is formulated in frequency-domain by using exact dynamic shape 

functions. Therefore it does not require any structural discretization to improve the solution accuracy for a uniform 

beam, regardless of its length. As it is one of element methods, the conventional finite element assembly procedure can  

be equally applied to formulate the global system dynamic equation of a structure. In SEM, the dynamic responsesin  
---------------------------- 
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frequency- and time-domains are computed very efficiently by using the forward-FFT (simply, FFT) and inverse-FFT 

(simply, IFFT) algorithms. Recently, Le-Ngoc and McCallion (1999) derived the dynamic stiffness matrix for the 

axially moving string to obtain exact eigenvalues. However, the spectral element model in terms of exact dynamic 

stiffness matrix has not been introduced in the literature for axially moving beam structures. 

The purposes of the present paper are first to formulate the spectral element model for the transverse vibration of an 

axially moving BE-beam model subjected to an axial tension, and then to verify its high accuracy by comparing with 

the solutions by the other solutions methods, and finally to investigate the effects of the moving speed and axial tension 

on the vibration and stability of the moving beam. 

 

2.  Equation of Motion 

Consider a BE-beam model of flexural rigidity EI, which travels under an applied axial tension N with constant 

transport speed c. The equation of motion and relevant boundary conditions can be derived form the extended 

Hamilton’s principle 
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where T and U are the kinetic energy and the potential energies, respectively, and δW is the virtual work. The kinetic 

and potential energies are given by 
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Equation of motion can be derived as substituting Eq.(2) and (3) into Eq. (1) 
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Fig. 1 Sign convention 

 

3.  Spectral Element Formulation 

The spectral element formulation begins with the governing equations of motion without external forces. The free 

vibration response of the moving BE-beam model are then represented in the discrete Fourier transform (DFT) forms as 

(Doyle, 1997; Lee et. al., 2000) 
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The weak form of the governing equation can be constructed. 
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From Eq. (6) Spectral matrix can be derived. 
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4. Numerical example 

 

Fig. 2 The dimensionless eigenvalues ( ) ( )λλλ ImRe i+=  vs. the moving speed of beam c , 
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Fig. 3 Dimensionless time responses at various moving speeds of beam 

 
Table 1. Comparison of the natural frequencies obtained by the present SEM, FEM, and analytical 

method  

Dimensionless Natural Frequency Dimensionless 

Moving Speed 
Method NE (NDOF) 

( )1Im λ  ( )2Im λ  ( )3Im λ  ( )5Im λ  

Analytical 1 9.870 39.478 88.826 246.740 

SEM 1 (2) 9.870 39.478 88.826 246.740 

10 (20) 9.870 39.482 88.874 247.714 
0 

FEM 
50 (100) 9.870 39.478 88.827 246.742 

0.5 1Dc  SEM 1 (2) 8.175 38.355 87.856 245.888 

Stable Divergence Flutter Mixed 
Instability 

Divergence 

Flutter 

][c  

D1c  
Sc F1c  

D2c F2c

][c  
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10 (20) 8.175 38.361 87.910 246.901  
FEM 

50 (100) 8.175 38.355 87.856 244.889 

SEM 1 (2) 0 34.811 84.909 243.325 

10 (20) 0 34.820 84.980 244.456 1Dc  
FEM 

50 (100) 0 34.811 84.909 243.325 

Note:  NE = number of finite elements,  NDOF = number of degrees-of-freedom 

 

5. Conclusions 

In this paper, the dynamic equations of motion for the moving BE-beam model subjected to an axial tension are 

derived and then the spectral element model is formulated by using the exact dynamic shape functions. The high 

accuracy of the spectral element is then verified by comparing its solutions with the exact analytical solutions and 

conventional FEM solutions. The critical moving speed at which the divergence instability occurs is analytically derived 

in a closed form. Through some numerical studies, when the moving speed reaches the lowest divergence speed, the 

first natural frequency vanishes and the first bending mode disappears, resulting in the divergence. 
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