• Title/Summary/Keyword: bearing wall building

Search Result 78, Processing Time 0.023 seconds

Investigation of the heavy-weight floor impact sound field in a testing building with bearing wall structure (벽식구조 표준시험동에서 중량충격음장에 관한 연구)

  • Yoo, Seung-Yup;Lee, Sin-Young;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.969-973
    • /
    • 2007
  • The heavy-weight floor impact sound field of the receiving room in a testing building with bearing wall structure was investigated using bang machine and impact ball. The sound field was investigated through the impact sound pressure level distribution by the field measurement and computational analysis. Predicted sound field using the computational analysis agree with measurement result in the low frequency band. Result shows that standard deviations of the single number rating value are about 2dB in each impact source. Particularly, impact sound pressure level at 120cm height in 63Hz octave band was 5dB lower than spatial averaging value. It was found that receiving positions in the ministry of construction and transportation notice should be reconsidered.

  • PDF

Economic Evaluation of Absorption Curtain Wall Sleeve with Relative Storey Displacement (층간변위 흡수형 커튼월 슬리브의 경제성 평가)

  • Hong, Sang-Hun;You, Nam-Gyu;Seo, Eun-Seok;Kim, Hae-Na;Kim, Bong-Joo;Jung, Ui-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.163-164
    • /
    • 2019
  • Curtain wall is constructed in various forms and designs by forming the exterior walls of a building, and refers to non-bearing walls that divide the exterior and interior spaces of a building. Curtain walls require not only wind pressure, but also waterproof, insulation, insulation, and durability, as well as the effects of recent frequent earthquakes. Studies on the sleeve used to connect the vertical member mullions in the process of high-rise curtain walls are insufficient. In this study, sleeves connecting curtain wall mullions were developed to absorb external displacement, and the purpose of this study was to evaluate economic feasibility through comparison with existing construction methods.

  • PDF

Cost Analysis of the Structural Work of Green Frame

  • Joo, Jin-Kyu;Kim, Sun-Kuk;Lee, Goon-Jae;Lim, Chae-Yeon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.401-414
    • /
    • 2012
  • The adoption of Green Frame is expected to provide economic benefits, since construction costs are reduced by the in-situ production of precast concrete column and beam. The cost reduction can ultimately be realized by saving transportation costs and the overhead and profit of PC plants. The cost structure of Green Frame, which is built up using composite precast concrete members, is similar to that of a bearing-wall structure, but the difference in construction process has resulted in some cost differences for a few items. In particular, production and installation is the principal work involved in Green Frame made by precast concrete members, while form and concrete work is the principal work for a bearing-wall structure. As such, the rental time and fee for a tower crane should be compared through time analysis. To verify reliability, this study focused on developed residential projects to estimate the construction costs. Through this analysis, it was found that the costs of Green Frame were 1.57% lower than the costs of bearing-wall structure. The results of this study will help in the development of a management plan for the structural work of Green Frame.

A Study on the Analysis of Insulation Performance according to Curtain Wall Type and Insulation Material Form (커튼월 형태 및 단열재 형상에 따른 단열성능 분석에 관한 연구)

  • You, Nam-Gyu;Hong, Sang-Hun;Kim, Hae-Na;Seo, Eun-Seok;Kim, Bong-Joo;Jung, Ui-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.165-166
    • /
    • 2019
  • Curtain wall means a non-bearing wall that forms the outer walls of a building to divide the exterior and interior space. The increased use of curtain walls is diverse, including structural safety, watertightness, and wind pressure. As the government's energy conservation policy and the aim of zero-energy houses, the importance of heat reduction is also greatly increased. So, the study of monotony is constantly being conducted. Thus, in this study, insulation performance was analyzed through simulation according to the shape of curtain wall and the shape of insulation inside, and the purpose of this study was to provide basic data on the application of insulation criteria by energy saving design of buildings.

  • PDF

Development of Long-Span Steel-Precast Composite Beam for Green Apartment Building (장스팬이 가능한 친환경 공동주택용 철골 프리캐스트 합성보 개발)

  • Yoon, Tae-Ho;Hong, Won-Kee;Park, Seon-Chee;Yune, Dai-Young
    • KIEAE Journal
    • /
    • v.11 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • Currently, the multi-residential apartments used in Korea are mostly bearing wall apartments which don't satisfy consumers for the lack of architectural plan flexibility. And due to remodelling-incompatible, bearing wall apartments have to be reconstructed. It is, thus, necessary to develop multi-residential apartments utilizing composite beam that can replace the conventional bearing wall-type apartment buildings. Composite beams proposed in this paper ensure modification of space and quality control, while the floor heights are maintained at the same floor height as in bearing wall structures. This study analyzes the experimental behavior of composite beams with proper combination of structural steel, reinforced concrete, and precast concrete. By comparing with the theoretical analysis and experimental results, the accuracy of flexural moment capacity and neutral axis was evaluated. The experiments were performed by two simply-supported specimens using loading and unloading. When the analysis results were compared with the experimental results, the flexural moment capacity of the composite beam was shown with an error of approximately -0.5 to 0.1% at the maximum load limit state.

Shaking Table Tests of 1/12-Scale RC Bearing-Wall System with Bottom Piloti Stories Having Eccentric Shear-Wall (편심을 가진 1/12 축소 RC 주상복합구조물의 진동대실험)

  • 이한선;고동우;권기혁;김병현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.185-190
    • /
    • 2001
  • The severe shortage of the available sites in the highly developed downtown area in Korea necessitates the construction of high-rise buildings which meet the need of residence and commercial activity simultaneously. The objective of this study is to investigate the seismic performance of this type of building structures. For this purpose, two 1:12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames with infilled shear wall have two different layouts of the plan : The one has symmetric plan and the other has unsymmetric plan. Then, this model was subjected to a series of earthquake excitations. The test results show that the layout of shear wall has the negligible effect on the natural period and the base shear coefficient, but great effect on the failure mode of beam-column joint at flexible side frame.

  • PDF

Probabilistic Prediction and Field Measurement of Column Shortening for Tall Building with Bearing Wall System (초고층 내력벽식 구조물의 기둥축소량에 대한 확률론적 예측 및 현장계측)

  • Song, Hwa-Cheol;Yoon, Kwang-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.101-108
    • /
    • 2006
  • Accurate prediction of time-dependent column shortening is essential for tall buildings in both strength and serviceability aspects. The uncertainty associated with assumed values for concrete properties such as strength, creep, and shrinkage coefficients should be considered for the prediction of time-dependent column shortening of tall concrete buildings. In this study, the column shortenings of 41-story tall concrete building are predicted using monte carlo simulation technique based on the probabilistic analysis. The probabilistic column shortenings considering confidence intervals are compared with the actual column shortenings by field measurement. The time-dependent strains measured at tall bearing wall building were generally lower than the predicted strains and the measured values fell within a range ${\mu}-1.64$, confidence level 90%.

Experimental Study on the Cyclic Behavior of Modular Building with Strap Braced Load Bearing Steel Stud Walls (스트랩 브레이스를 갖는 내력벽식 모듈러건축 스틸스터드 벽체의 반복하중에 대한 거동 연구)

  • Lee, Doo Yong;Cho, Bong Ho;Kim, Tae Hyeong;Ha, Tae Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.415-425
    • /
    • 2016
  • Load-bearing steel stud wall system is widely used for the middle-to-high rise modular buildings worldwide. Seismic performance is a key issue to apply load-bearing steel stud wall system to modular buildings in Korea. This study proposes a new strap braced steel stud wall system with enhanced seismic performance and design equations considering the flexural behaviour of the vertical outer studs. For the verification, two specimens with different strap braces and vertical outer stud were designed and tested. The test results showed that the total strengths were evaluated to be 1.11 to 1.18 times higher than the predicted values. Usually strap braced walls are considered to have low energy dissipation capacities. The proposed system showed enhanced seismic performance with equivalent damping of 9.42% due to the reduced pinching effects.

Evaluation of Impact Resistance of Interior Stone Walls Constructed on the ALC Block Wall (ALC 블록 벽체에 시공한 석재 아트월의 내충격성 평가)

  • Ko, Bong-Cheon;Lee, Duck-ju;Kim, Hyun;Chol, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.10-11
    • /
    • 2019
  • Interior stone walls are using commonly in non-bearing lightweight walls of apartments. The stones of interior wall were two types, one is a granite stone, another is a marble stone. Granite stone is attached by the epoxy adhesive and marble stone is attached by dedicated anchor and fastener. The impact resistance test was carried out interior stone walls in accordance with KS F 2613. The test methods included the impact resistance tests by each of soft impact body and hard impact body. The results of the test have proved that interior stone walls can withstand the soft impact bodies and hard impact bodies that are likely to happen in everyday life.

  • PDF

Experimental study on shear, tensile, and compression behaviors of composite insulated concrete sandwich wall

  • Zhang, Xiaomeng;Zhang, Xueyong;Liu, Wenting;Li, Zheng;Zhang, Xiaowei;Zhou, Yilun
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.33-43
    • /
    • 2021
  • A new type of composite insulated concrete sandwich wall (ICS-wall), which is composed of a triangle truss steel wire network, an insulating layer, and internal and external concrete layers, is proposed. To study the mechanical properties of this new ICS-wall, tensile, compression, and shearing tests were performed on 22 specimens and tensile strength and corrosion resistance tests on 6 triangle truss joints. The variables in these tests mainly include the insulating plate material, the thickness of the insulating plate, the vertical distance of the triangle truss framework, the triangle truss layout, and the connecting mode between the triangle truss and wall and the material of the triangle truss. Moreover, the failure mode, mechanical properties, and bearing capacity of the wall under tensile, shearing, and compression conditions were analyzed. Research results demonstrate that the concrete and insulating layer of the ICS-wall are pulling out, which is the main failure mode under tensile conditions. The ICS-wall, which uses a graphite polystyrene plate as the insulating layer, shows better tensile properties than the wall with an ordinary polystyrene plate. The tensile strength and bearing capacity of the wall can be improved effectively by strengthening the triangle truss connection and shortening the vertical distances of the triangle truss. The compression capacity of the wall is mainly determined by the compression capacity of concrete, and the bonding strength between the wall and the insulating plate is the main influencing factor of the shearing capacity of the wall. According to the tensile strength and corrosion resistance tests of Austenitic stainless steel, the bearing capacity of the triangle truss does not decrease after corrosion, indicating good corrosion resistance.