• 제목/요약/키워드: beam vibrations

검색결과 340건 처리시간 0.031초

외팔보 구조물의 진동감쇠를 위한 동흡진기의 실험적 연구 (An Experimental study on the Vibration absorber for vibration attenuation of cantilever beam structure)

  • 곽동기;배재성;황재혁;김헌수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.627-632
    • /
    • 2011
  • This study was carried out vibration attenuation of vibration absorber attached to the cantilever beam structure. Modern tank guns are stabilized to allow fire on the move while traversing uneven terrain. However, as the length of the barrel is extended, to meet required muzzle exit velocities, the terrain induced vibrations lead to increased muzzle pointing errors. Thus, reducing these vibrations should lead to increased accuracy. The vibration absorber includes a compliant energy storage device, such as a spring, and a mass secured to the energy storage device. In this study, it accomplished a research in about gun barrel vibration attenuation using tuned mass damper. The barrel was hung from a bungee cord for free - free condition. It accomplished a vibration experiment for verified attenuation efficiency.

  • PDF

압전재료와 점탄성 재료를 이용한 지능 복합적층보의 하이 브리드 진동제어 (Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material)

  • 강영규
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.148-153
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping hale been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

자중에 의한 정적 처짐을 고려한 변단면 보의 자유진동 (Free Vibrations of Tapered Beams with Static Deflection due to Self-Weight)

  • 이병구;이태은;안대순;김영일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.423-428
    • /
    • 2002
  • A numerical method is presented to obtain natural frequencies and mode shapes of tapered beams with static deflections due to self-weight. The differential equation governing the free vibrations of beam taken into account the static deflection due to self-weight is derived and solved numerically. The hinged-hinged, clamped-clamped and clamped-hinged and clamped-free end constraints are applied in the numerical examples. As the numerical results, the lowest three natural frequencies versus distributed slenderness ratio and section ratio are reported in figures. And for the comparison purpose, the typical mode shapes with the effects of static deflection are presented in figures.

  • PDF

두께가 얇은 단면을 갖는 곡선보의 자유진동 해석 (Free Vibration Analysis of Curved Beams with Thin-Walled Cross-Section)

  • 이병구;박광규;오상진
    • 소음진동
    • /
    • 제9권6호
    • /
    • pp.1193-1199
    • /
    • 1999
  • This paper deals with the free vibrations of circular curved beams with thin-walled cross-section. The differential equation for the coupled flexural-torsional vibrations of such beams with warping is solved numerically to obtain natural frequencies and mode shapes. The Runge-Kutta and determinant search methods, respectively, are used to solve the governing differential equation and to compute the eigenvalues. The lowest three natural frequencies and corresponding mode shapes are calculated for the thin-walled horizontally curved beams with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. A wide range of opening angle of beam, warping parameter, and two different values of slenderness ratios are considered. Numerical results are compared with existing exact and numerical solutions by other methods.

  • PDF

일단은 일반적인 지지조건을 갖고 타단은 집중질량을 갖는 변단면 보의 자유진동 (Free Vibrations of Tapered Beams with General Boundary Condition at One End and Mass at the Other End)

  • 오상진;이병구;이태은
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.493-500
    • /
    • 2001
  • The purpose of this paper is to investigate the natural frequencies and mode shapes of tapered beams with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass with translational elastic support at the other end. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest three natural frequencies and the corresponding mode shapes are calculated over a wide range of section ratio, dimensionless spring constant, and mass ratio.

  • PDF

유체에 담긴 기둥의 자유진동 (Free Vibrations of Columns Immersed in Fluid)

  • 오상진;이병구;모정만
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.225-230
    • /
    • 1999
  • The purpose of this paper is to investigate the natural frequencies and mode shape of columns immersed in fluid. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertial and shear deformation. The eccentricity and rotatory inerital of the tip mass are taken into account . The governing differential equations forr the free vibrations of immersed columns are solved numerically using the corresponding boundary conditoins. The lowest four natural frequencies and corresponding mode shapes are calculated over a range of non-dimensional system parameters : the ratio of fluid depth to span length, the mass ratio, the dimensionless mass moment of inertial, and the eccentricity.

  • PDF

불연속 변화단면 수평 곡선보의 자유진동 (Free Vibrations of Stepped Horizontally Curved Beams)

  • 이병구;진태기;김선기;신성철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.341-348
    • /
    • 2000
  • The differential equations governing the free vibrations of stepped horizontally circular curved beams with circular cross-section are derived and solved numerically. In numerical method, the Runge-Kutta and Determinant Search methods are used for computing the natural frequencies and mode shapes. Frequencies and mode shapes are reported as the functions of non-dimensional system parameters. The numerical method developed herein for computing frequencies and mode shapes are efficient and reliable.

  • PDF

Dynamics of a bridge beam under a stream of moving elements -Part 1 - Modelling and numerical integration

  • Podworna, M.
    • Structural Engineering and Mechanics
    • /
    • 제38권3호
    • /
    • pp.283-300
    • /
    • 2011
  • A new conception of fundamental tasks in dynamics of the bridge-track-train systems (BTT), with the aim to evaluate moving load's models adequacy, has been developed. The 2D physical models of BTT systems, corresponding to the fundamental tasks, have been worked out taking into account one-way constraints between the moving unsprung masses and the track. A method for deriving the implicit equations of motion, governing vibrations of BTT systems' models, as well as algorithms for numerical integration of these equations, leading to the solutions of high accuracy and relatively short times of simulations, have been also developed. The derived equations and formulated algorithms constitute the basis for numerical simulation of vibrations of the considered systems.

종동력을 받는 티모센코 보의 안정성에 미치는 크랙의 영향 (Effects of Crack on Stability Timoshenko Beam Subjected to Follower Force)

  • 안태수;손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.344-347
    • /
    • 2007
  • In this paper, the stability of a cracked cantilever beam subjected to follower force is presented. In addition, an analysis of the flutter instability(flutter critical follower force) of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Timoshenko beam theory. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter instability based on the variation of the first two resonant frequencies of the beam. Besides, the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. Generally, the critical follower force for flutter is proportional to the crack depth.

  • PDF