DOI QR코드

DOI QR Code

Free and forced vibrations of a tapered cantilever beam carrying multiple point masses

  • Chen, Der-Wei (Department of Naval Architecture and Marine Engineering, Chung Cheng Institute of Technology, National Defense University) ;
  • Liu, Tsung-Lung (Department of Naval Architecture and Marine Engineering, Chung Cheng Institute of Technology, National Defense University)
  • Received : 2004.12.10
  • Accepted : 2005.12.06
  • Published : 2006.05.30

Abstract

Keywords

References

  1. Abrate, S. (1995), ' Vibration of non-uniform rods and beams ', J. Sound Vib., 185(4),703-716 https://doi.org/10.1006/jsvi.1995.0410
  2. Auciello, N.M. (1996), ' Transverse vibration of a linearly tapered cantilever beam with tip mass of rotatory inertia and eccentricity ', J. Sound Vib., 194(1), 25-34 https://doi.org/10.1006/jsvi.1996.0341
  3. Auciello, N.M. and Nole, G. (1998),' Vibration of a cantilever tapered beam with varying section properties and carrying a mass at the free end ', J. Sound Vib., 214(1), 105-119 https://doi.org/10.1006/jsvi.1998.1538
  4. Auciello, N.M. and Maurizi, M.J. (1997),' On the natural vibration of tapered beans with attached inertia elements ', J. Sound Vib., 199(3), 522-530 https://doi.org/10.1006/jsvi.1996.0636
  5. Bathe, K.J. (1996), Finite Element Procedures, Prentice-Hall International, Inc.
  6. Datta, A.K. and Sil, S.N. (1996), ' An analysis of free undamped vibration of beams of varying cross-section ', Comput. Struct., 59(3), 479-483 https://doi.org/10.1016/0045-7949(95)60270-4
  7. De Rosa, M.A and Auciello, N.M. (1996),' Free vibration of tapered beams with flexible ends ', Comput.Struct., 60(2), 197-202 https://doi.org/10.1016/0045-7949(95)00397-5
  8. Faires, J.D. and Burden, R.L. (1993), Numerical Methods, PWS Publishing Company, Bostona
  9. Goel, R.P. (1976), ' Transverse vibration of tapered beams ', J. Sound Vib., 47(1), 1-7 https://doi.org/10.1016/0022-460X(76)90403-X
  10. Hoffmann, J.A and Wertheimer, T .(2000), ' Cantilever beam vibration ', J. Sound Vib., 229(5), 1269-1276 https://doi.org/10.1006/jsvi.1999.2572
  11. Karman, T.V and Biot, M.A .(1940), Mathematical Methods in Engineering, McGraw-Hill Book Company, Inc, 64-68
  12. Laura, P.A.A, Gutierrez, R.H. and Rossi, R.E. (1996),' Free vibration of beams of bi-linearly varying thickness ', Ocean Engineering, 23(1), 1-6 https://doi.org/10.1016/0029-8018(95)00029-K
  13. Meirovitch, L. (1967), Analytical Methods in Vibration, Macmillan Company, London, U.K
  14. Wu, J.S. and Hsieh, M. (2000),' Free vibration analysis of a non-uniform beam with multiple point masses ', Struct. Eng. Mech., 9(5), 449-467 https://doi.org/10.12989/sem.2000.9.5.449
  15. Wu, J.S. and Lin, T.L. (1990),' Free vibration analysis of a uniform cantilever beam with point masses by an analytical-and-numerical-combined method ', J. Sound Vib., 136, 201-213 https://doi.org/10.1016/0022-460X(90)90851-P

Cited by

  1. Nonlinear vibration analysis of a type of tapered cantilever beams by using an analytical approximate method vol.59, pp.1, 2016, https://doi.org/10.12989/sem.2016.59.1.001
  2. Free vibration analysis of a uniform beam carrying multiple spring-mass systems with masses of the springs considered vol.28, pp.6, 2006, https://doi.org/10.12989/sem.2008.28.6.659
  3. Numerical comparison of the beam model and 2D linearized elasticity vol.33, pp.5, 2009, https://doi.org/10.12989/sem.2009.33.5.621
  4. Free vibrations of AFG cantilever tapered beams carrying attached masses vol.61, pp.5, 2006, https://doi.org/10.12989/sem.2017.61.5.685
  5. Timoshenko theory effect on the vibration of axially functionally graded cantilever beams carrying concentrated masses vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.703