• Title/Summary/Keyword: beam growth

Search Result 582, Processing Time 0.035 seconds

Nucleation, Growth and Properties of $sp^3$ Carbon Films Prepared by Direct $C^-$ Ion Beam Deposition

  • Kim, Seong I.
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.173-176
    • /
    • 1997
  • Direct metal ion beam deposition is considered to be a whole new thin film deposition technique. Unlike other conventional thin film deposition processes, the individual deposition particles carry its own ion beam energies which are directly coupled for the formation of this films. Due to the nature of ion beams, the energies can be controlled precisely and eventually can be tuned for optimizing the process. SKION's negative C- ion beam source is used to investigate the initial nucleation mechanism and growth. Strong C- ion beam energy dependence has been observed. Complete phase control of sp3 and sp3, control of the C/SiC/Si interface layer, control of crystalline and amorphous mode growth, and optimization of the physical properties for corresponding applications can be achieved.

  • PDF

Effect of a Heavy-lon Beam Irradiation on Anthers, Calli and Seeds of Tobacco (Nicotiana tabacum L. cv. BY-4) (중이온 Beam 조사가 담배 (Nicotiana tabacum L. cv. BY-4)의 약과 캘러스 및 종자에 미치는 영향)

  • ;Abe Tomoko
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.109-115
    • /
    • 2000
  • Effects of the heavy-ion ($^{14}$ N or $^{20}$ Ne) beam irradiation on the response of anthers, growth of calli, germination of seeds, and the early growth after the germination of tobacco (Nicotiana tabacum L. cv. BY-4) were investigated. Anthers precultured for 10 days before the irradiation became brown without callus or shoot induction over 20 Gy of $^{14}$ N and $^{20}$ Ne ion beam irradiation. Relative growth rate of the cultured calli was reduced by the irradiation and became brown significantly 2 weeks after the $^{14}$ N and $^{20}$ Ne ion beam irradiation over 50 Gy. The increased intensity of the heavy-ion ($^{14}$ N, $^{20}$ Ne) beam irradiation resulted in the delay of seed germination and the inhibition of the early growth both in water-treated and non-treated seeds before the irradiation. In addition, the heavy-ion beam irradiation to the imbibed seeds inhibited seed germination more than that to the non-imbibed seeds. The screening approach of non-imbibed seeds with heavy-ion beam irradiation using in vitro culture system was more useful than the filter-paper germination method in investigating the characteristics of heavy-ion beam-irradiated seed population and the screening of morphological variants at the early stage of the plant growth.

  • PDF

GaAs Epilayer Growth on Si(100) Substrates Cleaned by As/Ga Beam and Its RHEED Patterns (As과 Ga 빔 조사에 의해 세척된 Si(100) 기판 위에 GaAs 에피층 성장과 RHEED 패턴)

  • Yim, Kwang-Gug;Kim, Min-Su;Leem, Jae-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.4
    • /
    • pp.170-175
    • /
    • 2010
  • The GaAs epitaxial layers were grown on Si(100) substrates by molecular beam epitaxy(MBE) using the two-step method. The Si(100) substrates were cleaned with different surface cleaning method of vacuum heating, As-beam, and Ga-beam at the substrate temperature of $800^{\circ}C$. Growth temperature and thickness of the GaAs epitaxial layer were $800^{\circ}C$ and 1 ${\mu}m$, respectively. The surface structure and epitaxial growth were observed by reflection high-energy electron diffraction(RHEED) and scanning electron microscope(SEM). Just surface structure of the Si(100) substrate cleaned by Ga-beam at $800^{\circ}C$ shows double domain ($2{\times}1$). RHEED patterns of the GaAs epitaxial layers grown on Si(100) substrates with cleaning method of vacuum heating, As-beam, and Ga-beam show spot-like, ($2{\times}4$) with spot, and clear ($2{\times}4$). From SEM, it is found that the GaAs epitaxial layers grown on Si(100) substrates with Ga-beam cleaning has a high quality.

Facet Growth of InGaAs on GaAs(100) by Chemical Beam Epitaxy Using Unprecracked Monoethylarsine (GaAs(100) 기판에 사전 열분해하지 않은 Monoethylarsine을 사용하는 Chemical Beam Epitaxy방법에 의한 InGaAs박막의 Facet 성장에 관한 연구)

  • 김성복;박성주;노정래;이일항
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.199-205
    • /
    • 1996
  • InGaAs eqitaxial layers have been selectively grown on patterned GaAs(100) substrates by chemical beam epitaxy (CBE) using triethylgallium (TEGa), trimethylindium (TMIn), and unprecracked monoethylarsine (MEAs). Facet growth of InGaAs epilayers has also been investigated at the various growth temperatures and Si4N4 dielectric pattern directions. In [011] jirection of mask, the change from (311), (377) and (111) facets to (311) facet with increasing growth temperature was observed. In [011] direction, however, the change from (011) and (111) facets to (111) facet with increasing growth temperature was observed. These results are attributed to the sidewall growth caused by different surface migration lengths of reactants. The formation of U-shaped (100) top surface is also discussed in terms of dangling bond model.

  • PDF

Growth Characteristics of AlN by Plasma-Assisted Molecular Beam Epitaxy with Different Al Flux (플라즈마분자선에피탁시법을 이용한 알루미늄 플럭스 변화에 따른 질화알루미늄의 성장특성)

  • Lim, Se Hwan;Lee, Hyosung;Shin, Eun-Jung;Han, Seok Kyu;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.539-544
    • /
    • 2012
  • We have grown AlN nanorods and AlN films using plasma-assisted molecular beam epitaxy by changing the Al source flux. Plasma-assisted molecular beam epitaxy of AlN was performed on c-plane $Al_2O_3$ substrates with different levels of aluminum (Al) flux but with the same nitrogen flux. Growth behavior of AlN was strongly affected by Al flux, as determined by in-situ reflection high energy electron diffraction. Prior to the growth, nitridation of the $Al_2O_3$ substrate was performed and a two-dimensionally grown AlN layer was formed by the nitridation process, in which the epitaxial relationship was determined to be [11-20]AlN//[10-10]$Al_2O_3$, and [10-10]AlN//[11-20]$Al_2O_3$. In the growth of AlN films after nitridation, vertically aligned nanorod-structured AlN was grown with a growth rate of $1.6{\mu}m/h$, in which the growth direction was <0001>, for low Al flux. However, with high Al flux, Al droplets with diameters of about $8{\mu}m$ were found, which implies an Al-rich growth environment. With moderate Al flux conditions, epitaxial AlN films were grown. Growth was maintained in two-dimensional or three-dimensional growth mode depending on the Al flux during the growth; however, final growth occurred in three-dimensional growth mode. A lowest root mean square roughness of 0.6 nm (for $2{\mu}m{\times}2{\mu}m$ area) was obtained, which indicates a very flat surface.

Effects of Proton Beam Irradiation on Germination and Growth of Tobacco and Rice Plants (담배와 벼의 발아와 생장에 대한 Proton 빔조사의 영향)

  • Lyu Jae-Il;Sarantuya Gendaram;Chai Jong-Seo;Kim Jae-Hong;Yang Tae-Gun;Lee Min-Yong;Yang Deok-Chun;Bae Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.18 no.3
    • /
    • pp.462-469
    • /
    • 2005
  • Effects of proton beam irradiation on seed germination and growth pattern of tobacco (Nicotiana tabacum L. cv. BY-4; N. plumbaginifolia) and rice (Oryasativa L.) plants were estimated to develop the efficient conditions of irradiation. Seed germination rate was decreased by increasing the proton beam the current and the beam irradiation time in both tobacco and rice seeds. The beam irradiation conditions showing $50\%$ germination were over 60 sec at 10 nA, approximately 5 sec at 100 nA and at 500 nA beam current in tobacco seeds. And the conditions of $50\%$ germination were 60 sec at 10 nA, and 100 nA and 30 sec at 500nA in rice (cv. Dongjin 1) seeds. The growth of irradiated plants was decreased, but significant difference in morphological changes was not observed by the proton beam treatment. The proton beam is able to use as a mutagen, but some of the factors including beam size and beam detector-system must be established for efficient usage of the beam.

As BEP Effects on the Properties of InAs Thin Films Grown on Tilted GaAs(100) Substrate (기울어진 GaAs(100) 기판 위에 성장된 InAs 박막 특성에 대한 As BEP 효과)

  • Kim, Min-Su;Leem, Jae-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.4
    • /
    • pp.176-179
    • /
    • 2010
  • The InAs thin films were grown on GaAs(100) substrate with $2^{\circ}C$ tilted toward [$0\bar{1}\bar{1}$] with different As beam equivalent pressure (BEP) by using molecular beam epitaxy. Growth temperature and thickness of the InAs thin films were $480^{\circ}C$ and 0.5 ${\mu}m$, respectively. We studied the relation between the As BEP and the properties of InAs thin films. The properties of InAs thin films were observed by reflection high-energy electron diffraction (RHEED), optical microscope, and Hall effect. The growth, monitored by RHEED, was produced through an initial 2D (2-dimensional) nucleation mode which was followed by a period of 3D (3-dimensional) island growth mode. Then, the 2D growth recovered after a few minutes and the streak RHEED pattern remained clear till the end of growth. The crystal quality of InAs thin films is dependent strongly on the As BEP. When the As BEP is $3.6{\times}10^{-6}$ Torr, the InAs thin film has a high electron mobility of 10,952 $cm^2/Vs$ at room temperature.

Effect of Incident Ion Beam Energy on Microstructure and Adhesion Behavior of TiN Thin Films (TiN 박막의 미세조직 및 밀착력에 미치는 입사이온빔 에너지의 효과)

  • Baeg, C.H.;Hong, J.W.;Wey, M.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.4
    • /
    • pp.229-234
    • /
    • 2005
  • Effect of incident ion beam energy on microstructure and adhesion behavior of TiN thin films were studied. Without ion beam assist, TiN film showed (111) growth mode which was thought to have the lowest deformation energy. As the ion beam assist energy increased, TiN film growth mode was changed from (111) to (200) mode. On the Si(100) substrate the critical incident energy for growth mode change was 100 eV/atom, however the critical assist energy was 121 eV/atom on the STD61 substrate. Grain size of TiN films increased with the assist ion beam energy. Finally, adhesion strength of TiN films bombarded above the critical ion assist energy showed 4~5 times higher values than that with lower bombard ion energy.

Potential for Novel Magnetic Structures by Nanowire Growth Mechanisms

  • Lapierre R.R.;Plante M.C.
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.108-112
    • /
    • 2005
  • GaAs nanowires were grown on GaAs (111)B substrates in a gas source molecular beam epitaxy system, using self-assembled Au particles with diameters between 25 and 200 nm as the catalytic agents. The growth rate and structure of the nanowires were investigated for substrate temperatures between 500 and $600^{\circ}C$ to study the mass transport mechanisms that drive the growth of these crystals. The possibilities for fabrication of novel magnetic nanostructures by suitable choice of growth conditions are discussed.

Visible Emission Properties of V2O5 Nanorods Prepared by Different Growth Methods

  • Kang, Manil;Kim, Sok Won;Ryu, Ji-Wook
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.289-295
    • /
    • 2014
  • ${\alpha}-V_2O_5$ nanorods were grown by means of electron beam irradiation and thermal oxidation methods and the visible emission properties of the nanorods grown by both methods were investigated. The growth and crystallinity of the nanorods were greatly enhanced by the insertion of a buffer layer. The emission spectra of the nanorods grown by thermal oxidation and electron beam irradiation showed a peak centered at 710~720 nm, which is believed to be due to oxygen vacancies introduced during the growth process. Also, the emission peak centered at 530 nm observed in the $V_2O_5$ nanorods grown by electron beam irradiation was considered to be due to the band edge transition as a result of the enhanced crystallinity.