Browse > Article
http://dx.doi.org/10.5695/JKISE.2010.43.4.170

GaAs Epilayer Growth on Si(100) Substrates Cleaned by As/Ga Beam and Its RHEED Patterns  

Yim, Kwang-Gug (Department of Nano Systems Engineering, Inje University)
Kim, Min-Su (Department of Nano Systems Engineering, Inje University)
Leem, Jae-Young (Department of Nano Systems Engineering, Inje University)
Publication Information
Journal of the Korean institute of surface engineering / v.43, no.4, 2010 , pp. 170-175 More about this Journal
Abstract
The GaAs epitaxial layers were grown on Si(100) substrates by molecular beam epitaxy(MBE) using the two-step method. The Si(100) substrates were cleaned with different surface cleaning method of vacuum heating, As-beam, and Ga-beam at the substrate temperature of $800^{\circ}C$. Growth temperature and thickness of the GaAs epitaxial layer were $800^{\circ}C$ and 1 ${\mu}m$, respectively. The surface structure and epitaxial growth were observed by reflection high-energy electron diffraction(RHEED) and scanning electron microscope(SEM). Just surface structure of the Si(100) substrate cleaned by Ga-beam at $800^{\circ}C$ shows double domain ($2{\times}1$). RHEED patterns of the GaAs epitaxial layers grown on Si(100) substrates with cleaning method of vacuum heating, As-beam, and Ga-beam show spot-like, ($2{\times}4$) with spot, and clear ($2{\times}4$). From SEM, it is found that the GaAs epitaxial layers grown on Si(100) substrates with Ga-beam cleaning has a high quality.
Keywords
GaAs; Si; Reflection high-energy electron diffraction; Molecular beam epitaxy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. W. Kang, J. Y. Leem, T. W. Kim, Microelectronics J., 27 (1996) 423.   DOI
2 T. W. Kang, Y. T. Oh, J. Y. Leem, T. W. Kim, J. Material Sci. Lett., 11 (1992) 392.   DOI
3 C. Cochran, L. Foster, J. Electrochem. Soc., 109 (1962) 144.   DOI
4 G. E. Becker, J. C. Bean, J. Appl. Phys., 48 (1997) 3395.
5 Y. Ota, J. Electrochem. Soc., 126 (1979) 1761.   DOI
6 J. C. Bean, G. E. Becker, P. M. Petroff, T. E. Seidel, J. Appl. Phys., 48 (1977) 907.   DOI
7 A. Ishizaka, Y. Shiraki, J. Electrochem. Soc., 133 (1986) 666.   DOI
8 J. C. Bean, G. A. Rozgonyi, Appl. Phys. Lett., 41 (1982) 752.   DOI
9 D. M. Zehner, C. W. White, G. W. Ownby, Appl. Phys. Lett., 36 (1980) 56.   DOI
10 T. de Jong, W. A. S. Dowma, L. Smit, V. V. Korablev, F. W. Saris, J. Vac. Sci. Technol. B, 1 (1983) 888.   DOI
11 H. Usui, S. Mukai, H. Yasuda, H. Mori, J. Cryst. Growth, 311 (2009) 2269.   DOI
12 D. Colombo, E. Grilli, M. Guzzi, S. Sanguinetti, A. Fedorov, H. von Kanel, G. Isella, J. Luminescence, 121 (2006) 375.   DOI
13 H. Huang, X. Ren, J. Lv, Q. Wang, H. Song, S. Cai, Y. Huang, B. Qu, J. Appl. Phys., 104 (2008) 113114-1.   DOI
14 T. Soga, T. Jimbo, G. Wang, K. Ohtsuka, M. Umeno, J. Appl. Phys., 87 (2000) 2285.   DOI
15 J. Y. Leem, D. Y. Kim, T. W. Kang, J. J. Lee, J. Y. Oh, Appl. Phys. Lett., 57 (1990) 2228.   DOI