• Title/Summary/Keyword: bayesian reliability

Search Result 243, Processing Time 0.029 seconds

A Note on Bayesian Reliability Estimation for the Lognormal Model (로그정규형(正規型)에서의 베이지안 추정(推定))

  • Sohn, Joong-Kweon;Kim, Yeung-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.1
    • /
    • pp.35-45
    • /
    • 1990
  • The problem of estimating the reliability using the Bayesian approach and the prior information about tile reliability of a lognormal distribution is considered. Some Bayes estimators are proposed and studied under the squared error loss and tile Harris loss. Also Monte Carlo simulations are carried out to examine the performances of the proposed estimators and results are provided in the tables.

  • PDF

Reliability Analysis Under Input Variable and Metamodel Uncertainty Using Simulation Method Based on Bayesian Approach (베이지안 접근법을 이용한 입력변수 및 근사모델 불확실성 하에 서의 신뢰성 분석)

  • An, Da-Wn;Won, Jun-Ho;Kim, Eun-Jeong;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1163-1170
    • /
    • 2009
  • Reliability analysis is of great importance in the advanced product design, which is to evaluate reliability due to the associated uncertainties. There are three types of uncertainties: the first is the aleatory uncertainty which is related with inherent physical randomness that is completely described by a suitable probability model. The second is the epistemic uncertainty, which results from the lack of knowledge due to the insufficient data. These two uncertainties are encountered in the input variables such as dimensional tolerances, material properties and loading conditions. The third is the metamodel uncertainty which arises from the approximation of the response function. In this study, an integrated method for the reliability analysis is proposed that can address all these uncertainties in a single Bayesian framework. Markov Chain Monte Carlo (MCMC) method is employed to facilitate the simulation of the posterior distribution. Mathematical and engineering examples are used to demonstrate the proposed method.

Parameter Estimation of Reliability Growth Model with Incomplete Data Using Bayesian Method (베이지안 기법을 적용한 Incomplete data 기반 신뢰성 성장 모델의 모수 추정)

  • Park, Cheongeon;Lim, Jisung;Lee, Sangchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.747-752
    • /
    • 2019
  • By using the failure information and the cumulative test execution time obtained by performing the reliability growth test, it is possible to estimate the parameter of the reliability growth model, and the Mean Time Between Failure (MTBF) of the product can be predicted through the parameter estimation. However the failure information could be acquired periodically or the number of sample data of the obtained failure information could be small. Because there are various constraints such as the cost and time of test or the characteristics of the product. This may cause the error of the parameter estimation of the reliability growth model to increase. In this study, the Bayesian method is applied to estimating the parameters of the reliability growth model when the number of sample data for the fault information is small. Simulation results show that the estimation accuracy of Bayesian method is more accurate than that of Maximum Likelihood Estimation (MLE) respectively in estimation the parameters of the reliability growth model.

Bayesian estimation in the generalized half logistic distribution under progressively type-II censoring

  • Kim, Yong-Ku;Kang, Suk-Bok;Se, Jung-In
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.977-989
    • /
    • 2011
  • The half logistic distribution has been used intensively in reliability and survival analysis especially when the data is censored. In this paper, we provide Bayesian estimation of the shape parameter and reliability function in the generalized half logistic distribution based on progressively Type-II censored data under various loss functions. We here consider conjugate prior and noninformative prior and corresponding posterior distributions are obtained. As an illustration, we examine the validity of our estimation using real data and simulated data.

Bayesian estimations on the exponentiated half triangle distribution under Type-I hybrid censoring

  • Kim, Yong-Ku;Kang, Suk-Bok;Seo, Jung-In
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.565-574
    • /
    • 2011
  • The exponenetiated distribution has been used in reliability and survival analysis especially when the data is censored. In this paper, we derive Bayesian estimation of shape parameter and reliability function in the exponenetiated half triangle distribution based on Type-I hybrid censored data. Here we consider conjugate prior and noninformative prior and obtained corresponding posterior distributions. As an illustration, the mean square errors of the estimates are computed. Comparisons are made between these estimators using Monte Carlo simulation study.

Reliability Demonstration Test for a Finite Population Based on the Conjugacy of the Beta-Binomial Distribution (베타-이항분포의 공액성을 근거로 한 유한 모집단의 신뢰성 입증 시험)

  • Jeon, Jong-Seon;Ahn, Sun-Eung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.98-105
    • /
    • 2012
  • This paper describes the Bayesian approach for reliability demonstration test based on the samples from a finite population. The Bayesian approach involves the technical method about how to combine the prior distribution and the likelihood function to produce the posterior distribution. In this paper, the hypergeometric distribution is adopted as a likelihood function for a finite population. The conjugacy of the beta-binomial distribution and the hypergeometric distribution is shown and is used to make a decision about whether to accept or reject the finite population judging from a viewpoint of faulty goods. A numerical example is also given.

Bayesian Estimations on the Exponentiated Distribution Family with Type-II Right Censoring

  • Kim, Yong-Ku;Kang, Suk-Bok;Seo, Jung-In
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.5
    • /
    • pp.603-613
    • /
    • 2011
  • Exponentiated distribution has been used in reliability and survival analysis especially when the data is censored. In this paper, we derive Bayesian estimation of the shape parameter, reliability function and failure rate function in the exponentiated distribution family based on Type-II right censored data. We here consider conjugate prior and noninformative prior and corresponding posterior distributions are obtained. As an illustration, the mean square errors of the estimates are computed. Comparisons are made between these estimators using Monte Carlo simulation study.

Bayesian analysis of a repairable system subject to overhauls with bounded failure intensity

  • Preeti Wanti, Srivastava;Nidhi, Jain
    • International Journal of Reliability and Applications
    • /
    • v.14 no.2
    • /
    • pp.55-70
    • /
    • 2013
  • This paper deals with the Bayesian analysis of the failure data of a repairable mechanical system subject to minimal repairs and periodic overhauls. The effect of overhauls on the reliability of the system is modeled by a proportional age reduction model and the failure process between two successive overhauls is assumed to be 2-parameter Engelhardt-Bain process (2-EBP). Power Law Process (PLP) model has a disadvantage which 2-EBP can overcome. On the basis of the observed data and of a number of suitable prior densities, point and interval estimation of model parameters, as well as quantities of relevant interest are found. Also hypothesis tests on the effectiveness of performed overhauls have been developed using Bayes factor. Sensitivity analysis of improvement parameter is carried out. Finally, a numerical application is used to illustrate the proposed method.

  • PDF

Reliability Effect Analysis for Game Software Verification and Validation (게임 소프트웨어의 확인 및 검증에 대한 신뢰도 영향 분석)

  • Son, Han-Seong;Roh, Chang-Hyun
    • Journal of Korea Game Society
    • /
    • v.11 no.6
    • /
    • pp.53-60
    • /
    • 2011
  • Since the importance of software reliability for game service increases continuously, the reliability evaluation becomes very important. This research performed an experiment which was intended to analyze the effect of software verification and validation, a representative activity of the software development process, on the software reliability. The results from the experiments provided the reliability evaluation based on the development process (e.g., Bayesian Belief Network based reliability estimation) with very useful bases.

A SOFTWARE RELIABILITY ESTIMATION METHOD TO NUCLEAR SAFETY SOFTWARE

  • Park, Gee-Yong;Jang, Seung Cheol
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.55-62
    • /
    • 2014
  • A method for estimating software reliability for nuclear safety software is proposed in this paper. This method is based on the software reliability growth model (SRGM), where the behavior of software failure is assumed to follow a non-homogeneous Poisson process. Two types of modeling schemes based on a particular underlying method are proposed in order to more precisely estimate and predict the number of software defects based on very rare software failure data. The Bayesian statistical inference is employed to estimate the model parameters by incorporating software test cases as a covariate into the model. It was identified that these models are capable of reasonably estimating the remaining number of software defects which directly affects the reactor trip functions. The software reliability might be estimated from these modeling equations, and one approach of obtaining software reliability value is proposed in this paper.