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1. INTRODUCTION

As digital systems are increasingly being used in nuclear
instrumentation and control systems, the reliability of
software (S/W) is becoming an important issue as it is
software that executes the required functions that a digital
safety system should perform.

Hardware faults usually occur due to aging or wearing
out, but software faults causing a digital system failure are
a design fault introduced during the software development
or maintenance phase. Hence, it is recommended that a
software safety analysis shall be performed along the
software development lifecycle [1] in order to remove
hazards from design faults at an early stage. The methods
of performing the software safety analysis had been devised
and applied to nuclear safety software for a digital reactor
protection system (DRPS) [2][3]. All previous works for
software safety analysis were based on a qualitative basis.

This paper presents a quantitative reliability assessment
of software that has passed through various test phases.
Most of the existing software reliability methods have
been developed in non-nuclear industries based on the
software reliability growth model (SRGM) [4][5]. The
SRGM modeling methods have some problems when
applied to nuclear safety software. The accuracy of the

existing SRGM models is heavily dependent on software
failure data. That is, it is hard for the SRGM to make sta-
tistical inference on rare event data where the software
failure detection frequency is extremely low. It is a pre-
requisite for the SRGM to produce a reasonably accurate
estimate with acceptable uncertainty that an appropriate
and sufficient amount of software failure data is to be
acquired [6].

Son, et al. proposed a procedure of the software reliability
assessment based on the SRGM modeling for safety-critical
software [7]. Even though the procedure proposed by Son,
et al. provides a systematic way to select a few candidate
SRGM models to be used in the probabilistic safety analysis
(PSA), the requirement of the sufficient software failure
data is inevitable. In the nuclear field, however, software
failure data are not accumulated sufficiently resulting in
the SRGM model's inability to produce a confident result.

On the contrary, there exists plentiful indirect infor-
mation on the quality of nuclear safety software in such a
way that there can be found sufficient qualitative infor-
mation about the software quality in the verification and
validation (V&V) reports. Or, the indirect quality infor-
mation can be obtained from a large amount of quantitative
test efforts in the V&V test reports. 

A method for estimating software reliability for nuclear safety software is proposed in this paper. This method is based on
the software reliability growth model (SRGM), where the behavior of software failure is assumed to follow a non-
homogeneous Poisson process. Two types of modeling schemes based on a particular underlying method are proposed in order
to more precisely estimate and predict the number of software defects based on very rare software failure data. The Bayesian
statistical inference is employed to estimate the model parameters by incorporating software test cases as a covariate into the
model. It was identified that these models are capable of reasonably estimating the remaining number of software defects
which directly affects the reactor trip functions. The software reliability might be estimated from these modeling equations,
and one approach of obtaining software reliability value is proposed in this paper.
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In order to apply an SRGM modeling method to nuclear
safety software that contains rare software failure data, the
Bayesian statistical inference is employed in this paper in
order to incorporate a covariate such as software test cases
into a software reliability model whose analysis foundation
is based on the software failure data. The Bayesian statistical
inference is performed by the Markov-chain Monte Carlo
(MCMC) sampling method in finding an optimal point
for model parameters with very rare failure data.

2. DESCRIPTION OF TARGET SOFTWARE AND
FAILURE DATA

The target software from which the software failure
data are acquired is the trip-functioning software in the
bistable processor (BP) software of a digital reactor pro-
tection system (DRPS) whose configuration is depicted in
Fig.1 [Ref.8]. Each channel of the four-redundant-channel-
based DRPS is composed of four main digital processors; i.e.,

the bistable processor (BP), the coincidence processor
(CP), the automatic test and interface processor (ATIP), and
the cabinet operator module (COM). The trip functions are
performed in the BP and the CP, and the other processors
are not directly related with the trip functions. Thus any
malfunction in the BP (or the CP) software may induce a
significant consequence on the DRPS.

It is very important to reduce the introduction of faults
during the software development process because software
failures are caused by design faults of the designer or pro-
grammer. To circumvent this, independent software V&V
activities following a rigorous procedure are performed
on the development outputs for the case of nuclear safety
software. Fig.2 shows the V&V activities that had been
actually performed during the development of the BP
software [9]. As can be seen in Fig.2, the main activity in
the V&V works after the design phase (i.e., from the imple-
mentation phase to the validation phase) is the V&V testing
efforts going through the component test (CT), the inte-
gration test (IT), and the system test (ST).
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Fig. 1. Configuration of a DRPS

Fig. 2. Software V&V Activities for BP Software
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From our experience, both the V&V activities described
above and the software safety analysis [2][3] could discover
various defects during the software development lifecycle.
Specifically, numerous software defects were discovered
and corrected at the requirements and design phases by
the software V&V activities together with the software
safety analysis.

In support of the above argument, according to Gaffney's
empirical formulae [10], the number of software bugs (B)
can be approximately anticipated when the lines of code
(S) for a source program are identified. Table 1 presents
the anticipated numbers of bugs in the target software
(that is, the trip-functioning software of the BP) that is
13,047 lines of source code (LOC). From Table 1, it is
anticipated that  a minimum of over 200 software defects
are going to be detected during the testing process for the
target software.

Actually, by reviewing the test reports, the total number
of software failures from both the component and integration
tests for the BP trip-functioning software was identified
to be 6, as shown in Table 2. Table 2 presents time-based
failure occurrences and the number of test cases executed
only for the trip-functioning software modules among all
the BP software modules. The type of test cases for the BP
trip-functioning software is on-demand type.

From Table 1 and Table 2, the frequency of failure
occurrences in the BP software is supposed to be extremely
lower than that of commercial software in non-nuclear
fields. From the above description, it is reasonable to
suppose that the V&V activities performed at the phases
before the implementation phase is remarkably effective
at removing the software defects, otherwise being detected
in the V&V test process, if these V&V test activities are
performed with a low uncertainty. This also implies that
the existing SRGM models are difficult to apply to such
infrequent failure occurrences, because although it is not

formally validated yet, the conventional SRGM models
usually work well for software whose failure occurrences
are near the anticipated range of some existing empirical
formulae such as Gaffney’s empirical formulae. Hence,
any other information reflecting the software quality than
the failure data is needed and must be incorporated into an
SRGM model in order to improve the model’s performance
when it is employed for the failure behavior as presented
in Table 2.

In commercial non-nuclear software, the SRGM models
based on the statistical inference are typically used and they
usually estimate two quantities, such as the remaining
software faults and the software failure rate, as a quantitative
measure. For a finite number of software failures collected
during a particular test interval with equal length, the
SRGM models with the non-homogeneous Poisson process
(NHPP) for describing the software failure process are
known to be the most famous method. One of the repre-
sentative methods for these models was described in a
paper by Goel and Okumoto [11].

As mentioned in Section 1, it is a prerequisite that a
sufficient number of failure data be acquired to accurately
estimate the parameters of the SRGM models. Insufficient
failure data cause the maximum likelihood estimation to
be unable to reach the maximum point, which makes the
statistical inference of the SRGM models result in the
number of remaining software faults with a high uncertainty.
In order to identify the performance of existing SRGM
models for the failure data in Table 2, some SRGM modeling
methods had been applied to the data in the second row
of Table 2. 

There are so many modeling methods proposed in the
software reliability literature, including over 200 modeling
methods for the S/W reliability [4]. Also, many computer-
aided tools are developed. Some of the tools widely used
in the world are the CASRE (Computer Aided Software
Reliability Estimation) tool [12] and the SMERFS III
(Statistical Modeling and Estimation of Reliability Functions
for Systems) tool [13].

It was identified that most of the existing modeling
methods based on the statistical inference could not find the
optimal point during the estimation of model parameters.
Fig.3 shows application results by SMERFS III. From Fig.3,
most models are inappropriate to apply to such rare failure
data in Table 2, except the S-T2 (Schnidewind Type #2)
method [13]. Though the S-T2 method is able to fit the
trend of the software failure data, the uncertainty of the
estimation results is too high to be considered a reliable result.
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Table 1. Anticipated Software Defects for BP Trip-Functioning
Program
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Table 2. Numbers of Test Failures and Test Cases along (Arbitrary) Time-Basis



Bayesian reliability modeling is able to make inference
stably for a rare event as shown later in Section 4. In addition,
this method has a very attractive advantage in that it can
easily incorporate a so-called covariate into its modeling
scheme. The covariate indicates diverse sources of reliability
evidence, which includes qualitative information such as
the V&V efforts as well as the testing efforts. Regarding
this fact, Bayesian modeling is employed for the software
reliability estimation in this paper.

Even though the software failure behavior in the BP
trip-functioning software is a rare event system, the infor-
mation of improving software quality is abundant in the
V&V reports. This information is also acquired from various
test reports. In order to incorporate the plentiful information
about the software quality into the estimation procedure
for the software reliability, Park, et al. [14] proposed an
S/W reliability assessment method in which the V&V
inspection results are incorporated into a Bayesian reliability
model. In this paper, an NHPP-based SRGM model using
the Bayesian inference is employed. As a covariate, inde-
pendent V&V test cases for the component and integration
tests are incorporated into the model, because both the
time-based failure data together with the test cases can be
identified and arranged from the component and integration
test reports. 

3. DESCRIPTION OF SOFTWARE RELIABILITY
MODELS

In this paper, the distribution of software failures is
assumed to follow the non-homogeneous Poisson process.
Thus, at an arbitrary time interval [tk-1, tk], the distribution
of a random failure M(k) is represented as

In Eq.(1), yk is the number of failures detected in the
interval of [tk-1, tk] and m(k) is the mean value function of

M(k). The mean value function m(k) is in this paper rep-
resented by

where b(k) is the defect discovery rate in the interval of
[tk-1, tk] and r(k) denotes the expected number of defects
remaining at time tk. The r(k) is represented recursively as

3.1 Ray, et al.’s Method [15]
In order to incorporate a covariate into the above SRGM

model, Ray, et al. [15] proposed that the defect discovery
rate b(k) in Eq.(2) or Eq.(3) is formulated by the following
log-linear model.

where γ0 and γ1 are the regression coefficients and TC[k]
is the number of test cases executed at the time interval
of [tk-1, tk]. 

Although this method has shown good estimation and
prediction results for some particular software failures [15],
it was identified in our case that this modeling method could
not make a reasonably good result for the data in Table 2.
Hence, in order to more accurately estimate the failure
behavior in Table 2, we modified the SRGM modeling
equations in Eq.(2) and Eq.(3) and applied modified models
to the software failure data of Table 2. Among them, two
modeling methods, which are called Model #1 and Model
#2 in this paper, showed reasonably good estimation results.
These two models are presented in the following subsections.

3.2 Model #1
In Model #1, the mean value function m(k) is modified as

where b(k) is the defect discovery rate at the time interval
of [tk-1, tk], d(k) is the term reflecting the test efforts, and
∆tk = tk – tk-1.

In Eq.(5), the time domain ∆tk in Eq.(2) is divided
into two separate domains, i.e., the domain of test efforts
and the domain of testing time. This is similar to the Cobb-
Douglas type function [16] which was previously employed
in a so-called two-dimensional software reliability assess-
ment. Inoue and Yamada [16] proposed this two-dimensional
software reliability model based on the statistical inference
and this model is applicable to the so-called “S-curve”
software failures (which means software failure data are
abundant).

The defect discovery rate b(k) is given by the following
simple log-linear model such as
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Fig. 3. Application Results of Existing SRGM Models by
SMERFS III



In Eq.(6), γ0 is the regression coefficient and thus the
defect discovery rate is constant. The test effort term d(k)
is formulated by

where η1 is also the regression coefficient. In Eq.(7), TE[k]
indicates the testing efforts. In this model, TE[k] is given
by the test cases accumulated from the test start to the
current time, tk.

The expected number of defects remaining at time tk,
r(k), is represented as

3.3 Model #2
In Model #2, the defect discovery rate of b(k) is also

constant. The mean value function is represented by a type
of Weibull distribution such as

where b(k) is represented by Eq.(6) and d(k) is formulated as

where η1 is the regression coefficient and TC[k] is the
number of test cases executed during [tk-1, tk].

The expected number of defects r(k) is, in this model,
represented as

4. APPLICATION OF SOFTWARE RELIABILITY
MODELS

The SRGM models described in the previous section
are implemented by the Bayesian inference tool, called
the WinBUGS [17]. The parameters (r(k), γ0, γ1) or (r(k),
γ0, η1) in modeling equations presented in the previous
section are estimated by the Bayesian inference.

The WinBUGS program for the modeling equations of
Model #1 in Section 3.2 is shown in Fig.4. As can be seen
in the last three expressions in Fig.4, the prior distributions
of the three model parameters, i.e., (r0, γ0, η1) are all given
the Normal distribution (“dnorm”) with zero mean and a
precision of 0.01 (roughly speaking, the precision is the
reciprocal of the variance). These prior distributions indicate
the non-informative distribution. 

After editing the program as shown in Fig.4, we need
to compile this program and run the MCMC algorithm.
Fig.5 shows some windows in the WinBUGS program
used for this procedure. Some menus in the menu bar and
the button functions in the windows are briefly explained
below following our estimation procedure.

When the model is programmed, we first select the
“Model” menu in the menu bar and then click the “Specifi-
cation…” item, resulting in the generation of a small window
of “Specification Tool” as can be seen in the upper right
portion of Fig.5. In the “Specification Tool” window, the
procedure using buttons is as follows:

- We need to press the “check model” button in order to
identify whether there is a syntax error in our program,

- We load the data of the failure occurrences and the
number of test cases as presented in Table 2 through
the “load data” button,

- By clicking the “compile” button, the program is
compiled,

- Then initial values for the MCMC algorithm are
loaded by clicking the “load inits” button. (in our
case, the initial values for model parameters are all
set to zero).

Completing the above procedure, the Bayesian inference
based on the MCMC sampling algorithm is ready to run.
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Fig. 4. WinBUGS Program for Modeling Equations of Model #1

Fig. 5. Compiling and Running Tools in the WinBUGS
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This is activated by selecting the “Update…” item in the
“Model” menu in Fig.5. Then the “Update Tool” window
appears as in the middle right area of Fig.5. After inputting
a desired sampling value into the field titled “updates”
and clicking the “update” button, the Bayesian inference
begins. In this case, the Bayesian sampling is updated until
the number of updates reaches 10,000 sampling steps as
specified in the “updates” editing field.

When the Bayesian inference is completed, the results
can be seen through the “Inference” menu in the menu
bar that creates the “Sampler Monitor Tool” window when
it is selected, as shown in the lower right portion of Fig.5.
The results in Fig.6 and Fig.7 below were actually obtained
using the functions provided by the “Sampler Monitor
Tool” window. The detailed explanation of how to use
the WinBUGS menus and their corresponding functions
are presented in Ref.17.

Fig.6 shows some of the posterior distributions for the

model parameters of Model #1 obtained from the MCMC
sampling with the sampling number of 10,000 (only 4,000
samples are used for the posterior distribution, discarding
the first 6,000 samples to remove a transient phenomenon
during the convergence process of model parameters).
The statistical information for the posterior distributions
in Fig.6 is presented in Fig.7. 

In Fig.7, the first column titled “node” presents the
model parameters to be monitored. The second column
(“mean”) represents the mean value for each of the corre-
sponding parameters. The third column (“sd”) means the
standard deviation and the fourth column (“MC error”) is
the errors related to the MCMC sampling algorithm. The
last three columns represent the percentile of a distribution.

As can be seen in Fig.7, the expected number of remain-
ing software faults at the end of the tests is 1.324 (r[20]
in Fig.7), while the number of remaining software faults
is estimated to be 4.878 for the Bayesian modeling without
test cases (to save space, this is not shown in this paper).
From this result, it is identified that the software quality

Fig. 6. Posterior Distributions for Model #1 Parameters Fig. 7. Statistics for Posterior Distributions of Model #1



is increased when the information of the test efforts is
incorporated into the SRGM model based on the Bayesian
inference in regard to the estimation of the number of
accumulated failures, remaining software faults, and so on.

Fig.8 shows the number of accumulated real and
estimated failure occurrences along the time index. The
table to the left in Fig.8 represents the accumulated number
of failure occurrences of Table 2. In Fig.8, the four types
of estimations for failure occurrences are displayed, and
these four graphs plot the mean values.

The line with solid diamond symbol with the legend
of “Fail_No” represents real software failure occurrences
as presented in the table to the left in Fig.8. The line with
solid rectangular symbol (“w/o TC”) indicates the Bayesian
estimation based solely on the software failure data, which
means the term including TC[k] in the most right-hand
side of Eq.(4) is removed during the Bayesian estimation.
The line with the solid triangular symbol (“w/ TC”) repre-
sents Ray, et al.’s model described in the subsection 3.1.
The line with the cross symbol (“Model #1) is for Model
#1 and the line with the snow symbol (“Model #2”) is for
Model #2.

Both methods, the Bayesian inference purely based on
the failure data and the Bayesian model in the subsection
3.1, show the inferior performance in that they underesti-
mate the failure occurrences as the testing time elapses. In
order words, they are going to more optimistically estimate
the software reliability. Ray, et al.’s model estimates the
failure trend reasonably well at the initial stage, but as time
elapses, this model underestimates the failure trend. It is
supposed that this inferiority of Ray, et al.’s model is due
to some mismatch between the number of test cases and
the software failure occurrences discovered. This mismatch
is supposed to be caused by the effect of the V&V activities
before the start of the V&V tests, or this may be due to
an uncertainty of testing activities such as the right recording
of the failure occurrences and test cases at the right time.

The estimation results of Model #1 initially underes-
timates the failure occurrences, but slightly overestimates

as time goes on. Model #2 overestimates the failure occur-
rences over the entire range of the time index. From the
results of Fig.8, Model #1 and Model #2 estimate the
trend of real failure occurrences reasonably well.

Fig.9 shows the results of deviance information criterion
(DIC) [17] for Model #1 and Model #2, respectively. Also
the mean-square error (MSE) values were calculated for
both models from the estimation results of Fig.8. For Model
#1, the DIC and MSE are 30.594 and 0.136, respectively.
The DIC and MSE are 22.674 and 0.122, respectively, for
Model #2. From these results, the Model #2 estimates are
better than the Model #1 estimates for the software failure
data as presented in Table 2.

From Fig.7, the number of remaining software defects,
r[20], estimated by Model #1 is 1.324. The number of
remaining software defects for Model #2 is 1.69 (though
not shown in this paper). The fact that the number of
remaining software defects is 1.324 or 1.69 implies that
additional testing efforts are required for the integration
test process, or more rigorous testing activity must be
performed in the system test in order to improve the soft-
ware quality. 
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Fig. 8. Estimations of S/W Failure Behavior

Fig. 9. Deviance Information Criterion (DIC) for Two Models



The “P” in the second row of Fig.7 represents the value
of a type of reliability. The value of P is 0.9397 in Model
#1 and 0.9953 in Model #2, respectively. This value is
calculated from

In Eq.(10), the index K indicates the last test time interval
(in this case, K=20) and b[K+1] equals b[K] because the
defect discovery rate for both models is constant for time
intervals of equal length. d[K+1] is obtained from

From Eqs.(10) and (11), the reliability P means the
probability that there is no failure when just one more
demand of a trip is applied to the trip-functioning software
during the next future time interval [tK+1-tK]. Thus if just
one single trip condition occurs during the time interval
[tK+1-tK], the probability of actuating the trip function is
0.9397 according to Model #1 and 0.9953 for Model #2,
respectively. 

5. CONCLUSIONS

In this paper, a quantitative software reliability assess-
ment is described, which is based on the NHPP-based
software reliability growth model. For safety software for
use in the DRPS, it was identified that the V&V activities
before the beginning of the testing phase could reduce
software defects significantly, and hence the failure detection
during testing phase might become a rare event.

It was identified that most of the existing SRGM
modeling methods were not appropriate to apply to this rare
failure data. To circumvent this problem, the Bayesian
inference is used in the estimation of the SRGM parameters.
The number of test cases as a time-varying covariate is
incorporated into the Bayesian inference. 

The SRGM models based on the Bayesian inference
could provide an accurate estimate for the failure trend,
resulting in a reduced number of remaining software defects.
And the software reliability for a specified future time
interval is proposed from the modeling equations. Based
on these results, the software quality can surely be rep-
resented quantitatively and the current level of the software
reliability can be identified. 

In addition, when a new dataset is acquired from other
tests, e.g., the system test or a real operation, by the aid
of the peculiar characteristic of the Bayesian inference, a
new posterior distribution is easily calculated from the
current posterior distribution using this dataset through
the Bayes theorem.
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