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Abstract. This paper deals with the Bayesian analysis of the failure data of a 
repairable mechanical system subject to minimal repairs and periodic overhauls. The 
effect of overhauls on the reliability of the system is modeled by a proportional age 
reduction model and the failure process between two successive overhauls is assumed 
to be 2-parameter Engelhardt-Bain process (2-EBP). Power Law Process (PLP) 
model has a disadvantage which 2-EBP can overcome. On the basis of the observed 
data and of a number of suitable prior densities, point and interval estimation of 
model parameters, as well as quantities of relevant interest are found. Also hypothesis 
tests on the effectiveness of performed overhauls have been developed using Bayes 
factor. Sensitivity analysis of improvement parameter is carried out. Finally, a 
numerical application is used to illustrate the proposed method. 
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1.  INTRODUCTION 
 
Most repairable mechanical systems often undergo a maintenance policy because 

they degrade with operating time. Maintenance extends system's lifetime or at least the 
mean time to failure and if the maintenance policy is effective it reduces the frequency of 
failures and the undesirable consequences of such failures. Maintenance can be 
categorized into two classes: corrective and preventive actions.  
1.Corrective maintenance: All actions performed to restore the system to functioning 
condition when it fails.  
2. Preventive maintenance: All actions performed to prevent failures when the system is 
operating.   
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Further, corrective and preventive maintenance actions are generally classified in terms of 
their effect on the operating conditions of the system. Pham, et al (1996) classified them 
as Perfect maintenance (good-as-new), Minimal maintenance (bad-as-old), Imperfect 
maintenance (between good-as-new and bad-as-old), Worse maintenance (worse condition 
than just prior to its failure). In real-world situations, maintenance generally enhances the 
condition of the equipment at a level between the extremes, i.e. Imperfect maintenance.  
We consider a system that deteriorates with age and receives two kinds of maintenance 
actions: minimal repair and overhaul. When a failure occurs, minimal repair is carried out. 
The minimal repair is a corrective maintenance action that brings the repaired equipment 
to the conditions it was just before the failure occurrence (bad-as-old). Hence, the 
reliability of the system decreases with operating time until it reaches unacceptable values. 
When it reaches unacceptable values or at prefixed epochs, preventive maintenance action 
(overhaul) is performed so as to improve the system condition and hence reduce the 
probability of failure occurrence in the following interval. However, overhaul cannot 
return the system to "good as new", and thus it can be treated as imperfect repair. When 
the overhaul is effective, the reliability of the system improves significantly. An overhaul 
usually consists of a set of preventive maintenance actions such as oil change, cleaning, 
greasing and replacing some worn components of the system.  
A general approach to model the improvement effect of maintenance, where each 
maintenance reduces the age of the unit in the view of the rate of occurrences of failures 
has been proposed by Malik (1979). It is assumed that each maintenance reduces 
proportionally the operating time elapsed from the previous maintenance. The 
proportional age reduction (PAR) model for imperfect maintenance given by Malik (1979) 
is a generalization of good-as-new and bad-as-old. Shin, et al (1996) have used this 
general model to propose a PAR model which assumes that each major overhaul reduces 
proportionally the age of the equipment by a fraction of the epoch of the overhaul. Two 
classes of models have been proposed by Jack (1997) to model different effects of 
rejuvenation of the preventive maintenance.  
Bayes approach has been used by several authors in contrast to the classical approach, as it 
helps in incorporating prior information and/or technical knowledge on the failure 
mechanism and on the overhaul effectiveness into the inferential procedure. Pulcini (2000) 
has dealt with the statistical analysis of the failure data of repairable mechanical units 
subjected to minimal repairs and periodic overhauls from a Bayes viewpoint. The Power 
Law process (PLP) is used to model the failure process between two successive overhauls 
and the effect of overhauls on the reliability of the system is modeled by PAR model. 
Further, Pulcini (2001a) has also delved upon the prediction of future failures of repairable 
mechanical units subjected to minimal repairs and periodic overhauls using PLP again to 
model the failure process between two successive overhaul epochs with the effect of 
overhauls on the reliability of the system modeled by proportional age reduction model 
from a Bayes viewpoint. 
In PLP models, the increasing failure intensity tends to infinity as the system age increases. 
However, it is noted that when beginning from a given system age, repeated minimal 
repair actions are combined with some overhauls performed in order to oppose the growth 
of failure intensity with the operating time, the failure intensity of deteriorating repairable 
systems attains a finite bound. The average behavior of the intensity function due to the 
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consecutive steps with increasing intensity between two subsequent overhauls result in 
globally constant asymptotic intensity. If such a data is analyzed through models with 
unbounded increasing failure intensity, such as the PLP, then pessimistic estimates of the 
system reliability may arise and incorrect preventive maintenance policy may be defined.  
NHPP with an increasing bounded intensity was first suggested by Engelhardt & Bain 
(1986) called Engelhardt-Bain process (EBP). But the mathematical simplicity of their 1-
parameter model makes it inadequate to analyze failure data in many cases. Most recently, 
Pulcini (2001b) has proposed a 2-parameter NHPP called the Bounded Intensity Process 
(BIP) to fit the failure data of deteriorating repairable systems showing bounded intensity 
function. Attardi, et al (2005) have proposed a new bounded intensity process called 2-
parameter Engelhardt-Bain process(2-EBP) whose failure intensity function is given by:      

t
(t) ; , 0; t 0

t
          

 .                    (1.1) 

The failure intensity in (1.1) tends to its asymptote more slowly than the BIP intensity, 
and is in a way, a compromise between the PLP and BIP models. When 1/   , the 
intensity in (1.1) degenerates into the EBP intensity. 
This paper deals with the Bayesian analysis of the failure data of a repairable mechanical 
system subjected to minimal repairs and periodic overhauls. To model the effect of 
overhauls on the reliability of the system a proportional age reduction model is assumed 
and the 2-parameter Engelhardt-Bain process (2-EBP) is used to model the failure process 
between two successive overhauls. Point and interval estimates of model parameters as 
well as other quantities of interest have been provided. Hypothesis tests on the 
effectiveness of performed overhauls have been provided using Bayes factor. Sensitivity 
analysis of improvement parameter is carried out. Finally, a numerical application is used 
to illustrate the proposed method.     
 
Nomenclature 
 
n                         total no. of failures    

k                         total no. of overhauls  

xi                        i
th overhaul epoch, i = 1….k 

,                     parameters of 2-EBP 
                        improvement factor   
tr                        time at which the failure intensity is r times the asymptotic value 

(t)1                  
initial failure intensity 

j 1 j(t |x )
        

conditional intensity function at a generic time t in the interval (xj, xj+1) 

j j 1E{N(x , x )}   
expected number of failures between two successive overhaul epochs 

g ( )                   prior pdf on  

r
g (t )

                 
prior pdf on rt  

g ( )                   prior pdf on  



 
 

 

58 Bayesian analysis of a repairable system subject with overhauls

 

a, b               prior gamma parameters of  

c, d               prior gamma parameters of rt  

p, q                     prior beta parameters of  
2

,                   prior mean and variance of  

r r

2
t t,                 prior mean and variance of rt  

2
,                   prior mean and variance of  

g( , t , )r             joint prior pdf of , t ,r   

( , , | data )       joint posterior pdf of , ,    

N                      expected number of failures from 0 up to a generic time   
in the interval i i 1(x , x )  

NHPP                Non Homogeneous Poisson Process 

2-EBP                2-parameter Engelhardt-Bain process 

PLP                   Power Law Process 
 
 

2. BASIC ASSUMPTIONS 
 

 Failure rate of the system is an increasing function of time that attains a finite bound 
as t tends to infinity.  

 System is subjected to two kinds of maintenance actions: minimal repair and overhaul.  
 The times to perform maintenance actions are ignored. 
 Minimal repair will restore the failure rate only to bad-as-old condition. But overhauls 

will improve the system to a condition between bad-as-old and good-as-new. 
  The failure density function is not changed by overhauls. 
 The quality of an overhaul is dependent on improvement factor  ( 0 1   ). 

 The improvement parameter   has a uniform value over all the overhaul actions.  

 The jth overhaul reduces the age t of the system by a fraction   of the epoch xj of the 
overhaul.  

 The effect of overhauls on the reliability of the system is modeled by proportional age 
reduction model and the 2-parameter Engelhardt-Bain process(2-EBP) is used to 
model the failure process between two successive overhauls, say ( xj, xj+1). 

 
1 2 k

x , x , ...,x are the k overhaul epochs, which may coincide with failure times.  
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3. MODEL FORMULATION 
 
Let 1 2 n...t t t    denote the n failure times of the repairable system observed till 

T. If nT t , i.e. the process is observed till nth failure, then it is failure truncated 

sampling and T is a random variable. If nT t , then it is time truncated sampling, where 

T is a prefixed quantity and n is a random variable.  
The 2-EBP model is an NHPP whose failure intensity is of the form  

t
(t) ; , 0; t 0

t
          

                           (3.1) 

which is an increasing bounded intensity function with the operating time t, equal to 0 at t 
= 0 and approaching an asymptote of   as t increases. So, the parameter   is the 

asymptotic value of the intensity function:    , and the parameter  is a measure of 

the initial increasing rate of (t) : the smaller   is, the faster the failure intensity 

increases until it approaches .       
 Thus, the initial failure intensity, i.e. the intensity function till the first overhaul epoch x1, 
is: 

   
1 1

t
(t) ; t x .

t
       

                  (3.2) 

The conditional intensity function at a generic time t in the interval (xj, xj+1), given xj is : 

  
j 1 j 1 j

j
j j 1

j

(t |x ) (t x )

t x
; x t x .

t x





   

 
        

            (3.3) 

The expected number of failures between two successive overhaul epochs is:  
j 1

j

x

j j 1 j 1 j

x

j 1 j
j 1 j

j j

E{N(x ,x )} (t |x )dt

x x
(x x ) log .

x x



 




 

    
            


        (3.4) 

The cumulative value of expected number of failures from 0 up to a generic time   in the 
interval (xi, xi+1) is: 

i 1

( ) j j 1 i i i 1 0
j 0

N E{N(x , x )} E{N(x , x )}, x x , x 0,


   


 
      
 

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i 1
j 1 j

j 1 j
j 0 j j

i
i

i i

x x
(x x ) log

x x

x
( x ) log .

x x







     
               



      
           


             (3.5) 

 
 

4. LIKELIHOOD FUNCTION 
 

If the data is time truncated, the joint pdf of the failure times (t1, t2,…,tn) : 

1 2 n 1 2 1 n 1 2 n 1 nf (t , t , ..., t ) f (t ) f (t | t ) ...f (t | t , t ,..., t ) F(T | t )

1 2 n

t t ttt 2 1 n n 1 T1

0 0 0 0 t0 n

(u)du (u)du (u)du (u)du (u)du(u)du

(t ).e . (t ).e ... (t ).e .e

   
           
      


         

   

i

T

n
0

i 1

(u)du

(t ) . e




 
  
 
  ,                                                                         (4.1) 

where T is the truncation time. 
As 

1 2 k
x , x , ...x  are the k overhaul epochs, they provide disjoint fixed intervals (x0, x1), (x1, 

x2),… (xk-1, xk). Since the overhaul epochs are prescheduled, they are not random. Let the 
time interval (xj, xj+1) be the (j+1)th period. 

From (3.3) and (4.1) for  j j 1
t x x,


 , the joint pdf of failure times in (xj, xj+1)   

j 1 i j

x j 1
(t| x )dtj 1 jx j

i t (x ,x ]i j j 1

(t |x ) e






 

  

 
 
 
 

 .               (4.2) 

 
Since the overhaul epochs are prescheduled, the failure times in disjoint epoch periods are 
independent and therefore, the joint pdf of the failure times (t1, t2,…,tn) is simply the 
product form of (4.2)., i.e. 

k

j 0
k

1 2 n j 1 i j

x j 1
(t| x )dtj 1 jx j

j 0 t (x ,x )i j j 1

f (t , t ,..., t ) L(data | , , ) (t |x ) . e







 

  

 
      
 
 
   
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k
i j

i j

x xk j 1 j(x x ) logj 1 j x xj 0 j jn

j 0 t (x ,x )i j j 1

t x
. e ,

t x

  
  
      

       

  

            
               

                                                                                                                                                       (4.3) 

k 1where x T.   

5. BAYESIAN PROCEDURE 
 

5.1 Informative prior 
Suppose the analyst is able to anticipate:  

a) the asymptotic value     of the intensity function, and 

b) the time tr at which the failure intensity is r times the asymptotic value (r<1) i.e. 

r
i r i 1

(t )
r ; x t x 




  


 

   

i
r

(1 r) x r
t .

1 r

        
                                  (5.1) 

Now, we assume a Gamma density for  and tr, both for the mathematical tractability and 
flexibility. Therefore,    

   
a

a 1b
g( ) exp( b ); a,b 0

(a)
     


,                        (5.2) 

and 
c

c 1
r r r

d
g(t ) (t ) exp( dt ); c,d 0

(c)
  


,                             (5.3) 

where the gamma parameters are related to the prior mean and standard deviation by: 

   
2

2a , b , 

 

  
     

            (5.4) 

and 
2

t t
2

t t

c , d .
  

    
                       (5.5) 

The analyst can use the fact that a   value closer to 0 (to 1) indicates less (more) 

effectiveness of the overhaul actions to formulate an informative prior on . We assume 

that the analyst is able to anticipate both a prior mean and standard deviation on , say

and   , then we formalize this information through a beta density:      

   
p 1 q 1(1 )

g( ) ; 0 1 ,
(p,q)

  
    


                   (5.6) 

where the values of the parameters related to the prior mean and standard deviation are: 
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2

2

(1 ) (1 )
p , q p .  




    
   


                      (5.7) 

 
5.2 Joint prior density 

 Assuming the prior independence of the parameters ( , , )   , and using (5.1) to 

find density of , the joint prior density g( , , )   is given by:  

i(1 r) x rc 1
d

a 1 b p 1 q 11 ri(1 r) x r
g( , , ) e e (1 ) .

1 r

                        
       (5.8) 

 
5.3 Joint posterior density on model parameters 

By combining the likelihood (4.3) with the joint prior density (5.8), the joint posterior 
density on the model parameters is given by: 

k
i j

i j

c 1
p 1 qi

x xk j 1 j(x x ) logj 1 j x xj 0 j jn

j 0 t (x ,x )i j j 1

(1 r) x rid
1 rba 1

data
t x1

( , , | ) . . e .
D t x

(1 r) x r
.e . .e . .(1 )

1 r

  
         

 
 
   

       

  

   
  

                

        

 

1,
    

(5.9) 
where 
 

1

n a
k0 0

j 1 j
j 1 j

j 0 j j

f ( , | data)
D (n a) d d  , 

x x
b (x x ) log

x x










 
    

      
               

 


         (5.10) 

 

c 1k
i j p 1 q 1i

i j

(1 r) x rid
1 r

j 0 t (x ,x )i j j 1

t x (1 r) x r
f ( , | data) . .e . .(1 ) .

t x 1 r

 
  
    

   


  

                       
    

(5.11) 
 
 
 

6. POSTERIOR INFERENCE ON THE PARAMETERS 
 

1

n a
k0

j 1 j
j 1 j

j 0 j j

(n a) f ( , | data)
h( | data) d

D x x
b (x x ) log

x x








   
  

      
               




   (6.1) 
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n a
k0

j 1 j
j 1 j

j 0 j j

(n a) f ( , | data)
h( | data) d

D x x
b (x x ) log

x x










   
  

      
               




    (6.2) 

k
j 1 j

j 1 j
j jj 0

x x
b (x x ) log1

x xn a 1

0 0

1
h( | data) f ( , | data). .e d d

D






    
                 


       
 

(6.3) 

The point estimates (mean, median, and mode) of the parameters ( , , )    as well 

as the credibility intervals can be obtained from (6.1), (6.2), (6.3), respectively using 
numerical integration and iterative procedures. 

 
 

7. POSTERIOR INFERENCE ON THE INTENSITY FUNCTION 
 

The conditional intensity function at a generic time   in the interval (xi, xi+1), given xi 

is:  

i 1 i

i
i i 1

i

( |x )

x
; x x .

x

 



   

  
         

                                                    (7.1) 

 

i

i

x

x

    
       

.                                                      (7.2) 

Using (7.2), the posterior density on   is given by: 

 
1

n a 1i

i0 0

x xkx j 1 ji b (x x ) logn a j 1 jx x xj 0i j j

1
h( | data) .

D

x
f ( , | data). . .e d d  .

x



                        


          

 

  
      


(7.3) 

The point estimates (mean, median, and mode) of   as well as the credibility intervals 

can be obtained from (7.3) using numerical integration and iterative procedures. 
In particular, the posterior mean E{ | data}  is: 
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1
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n a 1
ki0 0

j 1 j
j 1 j

j 0 j j

(n a 1)
E{ | data} .

D

x 1
f ( , | data). . d d  .

x x x
b (x x ) log

x x





 






  
 

 
            

             

 


 

(7.4) 
 
 

 
8. POSTERIOR INFERENCE ON THE EXPECTED NUMBER OF FAILURES 

 
Using (5.3)  

( )N / Z ,        (8.1) 

where 
i 1

j 1 j i
j 1 j i

j 0 j j i i

x x x
Z (x x ) log ( x ) log .

x x x x







                                        


 
(8.2) 

Using (8.1), the posterior density of expected number of failures in the time interval (0, )
is: 

 
k
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j 1 j

j jj 0
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N x x
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1
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1
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

                           




     
  

    (8.3) 

The point estimates (mean, median, and mode) of ( )N   as well as the credibility intervals 

can be obtained from (8.3) using numerical integration and iterative procedures. 
In particular, the posterior mean ( )E{N | data} is: 

1

( ) n a 1
k0 0

j 1 j
j 1 j

j 0 j j

(n a 1) 1
E{N | data} . f ( , | data).Z. d d .

D x x
b (x x ) log

x x


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




  
    

      
               

 


(8.4) 
 

 
9. BAYES TESTING 

 
To assess the effectiveness of the overhauls and evaluate evidence in favour of the 

assumed PAR-2EBP model, statistical procedures need to be carried out.   
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Further,  ( 0 1   ) is the improvement parameter that measures the effect (on the 

average) of major overhauls on the reliability of the system. When = 0, the overhaul 
effectiveness is null (minimal repair or bad-as-old maintenance), and the whole process 
reduces to 2-EBP. When   = 1, the overhaul is perfect (good-as-new maintenance), and 
each overhaul produces a renewal of the equipment. Thus, testing for the complete 
effectiveness or ineffectiveness of major overhauls means to test  = 1 or   = 0 in the 

presence of model parameters ,  . 

The Bayesian approach to hypothesis testing was developed by Jeffreys (1935, 1961).  In 
this approach he introduced the statistical methods to represent the probability of the data 
according to each of the two competing theories, and the posterior probability that one of 
the theories is correct is computed using Bayes' theorem. 
The posterior probability kPr{H | data}  {k=0, 1} is: 

k k
k

0 0 1 1

Pr{data | H }. Pr{H }
Pr{H | data}

Pr{data | H }. Pr{H } Pr{data | H }. Pr{H }



   , k=0, 1 , 

              (9.1) 
where 

kPr{data | H } is the product of the likelihood function and the joint prior of the model 

parameters. 
Bayes factor 01B is defined as: 

0

1
01

0

1

Pr{H | data}
Pr{H | data}

B
Pr{H }

Pr{H }

   0

1

Pr{data | H }

Pr{data | H }
 .       (9.2) 

Large values of 01B provide evidence in favour of the null hypothesis 0H , whereas large 

values of 10
01

1
B

B
  provide evidence against 0H . 

Kass, et al (1995) provided appropriate bounds for 102 log B : 

102 ln B  Evidence against 0H  

0 to 2 Not worth more than a bare mention
2 to 6 Positive 
6 to 10 Strong 
> 10 Very Strong 

 
9.1. Testing for perfect overhauls 

'
0

1

H : 1

H : 0 1



   

 



 
 

 

66 Bayesian analysis of a repairable system subject with overhauls

 

Evidence in favour of null hypothesis 
'H
0

 would affirm that the effectiveness of 

overhauls is complete whereas evidence in favour of alternate hypothesis would affirm 
that the effectiveness of overhauls is partial and PAR-2EBP model is more adequate to 
describe the underlying failure process. 

Under
'H
0

, the likelihood function is: 

k
j 1 j

j 1 j
j 0

i j j 1
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 
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   

 (9.3) 
Using (5.8) and (9.3),  
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 
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      (9.5)                                    
and the Bayes factor 01B is the ratio of (9.4) to (9.5). 

 
9.2. Testing for null effectiveness of overhauls 

"
0

1

H : 0

H : 0 1



 
 

Evidence in favour of null hypothesis 0 ''H  would affirm that the effectiveness of 

overhauls is null whereas evidence in favour of alternate hypothesis would affirm that the 
effectiveness of overhauls is partial and PAR-2EBP model is more adequate to describe 
the underlying failure process. 

Under 
"
0H , the likelihood function is: 

Tn T log 1
n i

i 0 i

t
L(data | , ) . e .

t

         



  
         

                (9.6) 

Using (5.8) and (9.6)  
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     
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


   
           

           


 ,      (9.7) 

and the Bayes factor 01B is the ratio of (9.7) to (9.5). 

 
 

10. SENSITIVITY ANALYSIS 
 

Sensitivity analysis is carried out with respect to the prior information on  , namely 

the prior mean  and the standard deviation  , by evaluating the Bayes factor over a 

reasonable range of values for   
and  . If the change in values of   

and   
does 

not have much effect on Bayes factor, then the proposed prior is robust. 
 
 

11. NUMERICAL APPLICATION 
 

Consider the following hypothetical data for illustrative purpose:  
The failure times (n =18) and overhaul epochs are given in Table 1, major overhauls 
marked with *.  We have assumed it to be a time truncated sample with failures observed 
for 1500 units. Four major overhauls are assumed to be performed at times different than 
failure times.  
 

Table 1. Failure times and overhaul epochs 

202 265 300* 363 508 571 600* 755 770 818 868 

900* 999 1054 1068 1108 1200* 1230 1268 1330 1376 1447 

 
Suppose that analyst is able to anticipate a prior mean  = 0.133 and  = .004 (a = 4, b 

= 30). In addition from previous experiences, the analyst possesses a vague belief that the 
failure intensity, at the time tr = 753 units, is nearly half its asymptotic value: 

(753)
0.5.







Then, he formalizes his prior knowledge on tr through the exponential 

density having mean t 753  , so that: c = 1 and d = 0.001. As xi <tr < xi+1, therefore 

600 < 753 < 1200. Hence, xi = 600.  
Again, the analyst possesses a vague belief that the overhaul actions are quite effective, 
and then he chooses the beta density for the improvement parameter with prior mean 

0.6   and standard deviation  = 0.26 (p = 1.5 and q = 1). The posterior mean and 

the 0.95 equal-tails credibility intervals for ,  are given in Table 2. 
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Table 2. Bayes estimates and credibility intervals 

                   Bayes Estimates 
               

Point Estimate 1879.49 0.683 
0.95 Lower Limit 515 0.236 
0.95 Upper Limit 3940 0.956 

 
Table 3 compares the observed failure data to the posterior mean and 0.80 equal-tails 

credibility intervals of the cumulative expected number of failures ( )N .  
In Table 4 and Table 5 the quantity 

102 log B is given for the selected values of  and 

respectively, when the null hypothesis is '
0H : 1  and "

0H : 0 .  

The values in Tables 4 and 5 are compared with the bounds given by Kass, et al (1995), 
thus affirming that there is positive evidence against the null hypothesis, so that neither 
the overhauls are completely effective nor have null effectiveness. So, PAR-2EBP is 
adequate to describe the failing process.   

Moreover the change in values of  and  does not have much effect on Bayes factor, 

therefore, the proposed prior is robust. 
 

Table 3. Posterior mean and Credibility Intervals of ( )N   

0-   Observed failures 
Mean Number

of Failures 
0.80 Lower Limit 0.80 Upper Limit 

0-300 2 2.137 1.44 2.76 

0-400 3 2.763 2.03 3.44 

0-500 3 3.815 2.88 4.53 

0-600 5 5.241 4 6.41 

0-700 5 6.182 4.84 7.42 

0-800 7 7.514 5.95 8.97 

0-900 9 9.191 7.31 10.95 

0-1000 10 10.411 8.35 12.39 

0-1100 12 11.993 9.66 14.2 

0-1200 13 13.899 11.20 16.43 

0-1300 15 15.368 12.41 18.16 

0-1400 17 17.178 13.9 20.3 

0-1500 18 19.290 15.62 22.77 
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Figure 1. The posterior mean of the conditional failure intensity   

 

Table 4. Sensitivity Analysis on over a reasonable range of values for   

Percentage Deviation   102 log B  

0 'H : 1 0 ''H : 0  

-1% 0.594 4.94386 2.0820 

+1% 0.606 4.9630 2.1012 

-2% 0.588 4.9320 2.0702 

+2% 0.612 4.9720 2.1102 

-3% 0.582 4.9204 2.0586 

+3% 0.618 4.9804 2.1186 

 

Table 5. Sensitivity Analysis on over a reasonable range of values for   

Percentage Deviation   102 log B

0 'H : 1 0 ''H : 0  

-1% 0.2574 4.9595 2.0977 

+1% 0.2626 4.9468 2.0850 

-2% 0.2548 4.9655 2.1037 

+2% 0.2652 4.9402 2.0784 

-3% 0.2522 4.9712 2.1094 

+3% 0.2678 4.9334 2.0716 
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