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Abstract

The half logistic distribution has been used intensively in reliability and survival
analysis especially when the data is censored. In this paper, we provide Bayesian esti-
mation of the shape parameter and reliability function in the generalized half logistic
distribution based on progressively Type-II censored data under various loss functions.
We here consider conjugate prior and noninformative prior and corresponding posterior
distributions are obtained. As an illustration, we examine the validity of our estimation
using real data and simulated data.

Keywords: Bayesian estimation, generalized half logistic distribution, progressively
Type-II censoring, reliability.

1. Introduction

The probability density function (pdf) and cumulative distribution function (cdf) of the
random variable X having the generalized half logistic distribution are given by

f(x;λ) = λ

[
2e−x

1 + e−x

]λ
1

1 + e−x
(1.1)

and

F (x;λ) = 1−
[

2e−x

1 + e−x

]λ
, (1.2)

where λ is the shape parameter. In special case, when λ = 1, this distribution is the
half logistic distribution. From (1.1), the reliability function of the generalized half logistic
distribution with shape parameter λ is given by

R(x) =

[
2e−x

1 + e−x

]λ
, x > 0, λ > 0. (1.3)
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The half logistic distribution has been used quite extensively in reliability and survival
analysis particularly when the data is censored. Inferences for the half logistic distribution
were discussed by several authors. Balakrishnan and Puthenpura (1986) introduced the best
linear unbiased estimators of location and scale parameters of the half logistic distribution
through linear functions of order statistics. Balakrishnan and Wong (1991) obtained ap-
proximate maximum likelihood estimates (AMLEs) for the location and scale parameters of
the half logistic distribution with Type-II right censored sample. Recently, Kang and Park
(2005) derived the AMLE of the scale parameter of the half logistic distribution based on
multiply Type-II censored samples. Kang et al. (2009) proposed the AMLEs of the scale
parameter in a half logistic distribution based on double hybrid censored samples.

The progressive censoring appears to be of great importance in planning duration exper-
iments in reliability studies. In many life testing and industrial experiments, experiments
have to be terminated early and also the number of failures must be limited for various
reasons. Progressively Type-II censoring is a generalization of Type-II censoring. In this
case, the first r1 failures in a life test of n items are observed; then n1 of the remaining
n − r1 unfailed items are removed from the experiment, leaving n − r1 − n1 items still
present. When a further r2 items have failed, n2 of the still unfailed items are removed,
and so on. The experiment terminates after some prearranged series of repetitions of this
procedures. Also note that if r1 = r2 = · · · = rm = 0, so that m = n, progressively Type-II
censoring scheme reduces to the case of no censoring, that is, complete data. Balakrishnan
et al. (2003) suggested point and interval estimation for Gaussian distribution based on pro-
gressively Type-II censored samples. Balakrishnan et al. (2004) studied point and interval
estimation for the extreme value distribution under progressively Type-II censored sample.
Seo and Kang (2007) derived AMLEs for Rayleigh distribution based on progressively Type-
II censored data. Kang et al. (2008) derived the AMLEs and maximum likelihood estimator
of the scale parameter in a half logistic distribution based on progressively Type-II censored
samples.

In Bayesian estimation, we consider three types of loss functions. The first is the squared
error loss function (SELF) which is a symmetric loss function assigning equal losses to
over estimation and underestimation. The Bayes estimator under the SELF is the posterior
mean given by θ̂BS = Eπ(θ), where Eπ denotes the posterior expectation. However, such a
restriction may be impractical because an overestimate is usually much more serious than an
underestimate in the estimation of reliability and failure rate functions. In this case the use
of a symmetrical loss function might be inappropriate. To overcome this difficulty, Varian
(1975) proposed an asymmetric loss function known as the linex loss function (LLF) and got
a lot of popularity due to Zellner (1986). The Bayes estimator under the LLF is given by

θ̂BL = − 1
c ln {Eπ [exp(−cθ)]} , provided that the expectation exists and is finite. Finally, in

many practical situations, it appears to be more realistic to express the loss in terms of the

ratio θ̂
θ . In this case, Calabria and Pulcini (1996) proposed that a useful asymmetric loss

function is the General Entropy loss function (GELF). This loss function is a generalization
of the Entropy loss when shape parameter p = 1. The Bayes estimator under the GELF

is given by θ̂BE = − [Eπ(θ−p)]
−1/p

, provided that the expectation Eπ(θ−p) exists and is
finite. Recently, Kim et al. (2011) suggested Bayesian estimations on the exponentiated half
triangle distribution under Type-I hybrid censoring.
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2. Maximum likelihood estimation

First, we derive the maximum likelihood estimator of the shape parameter and reliability
function based on progressively Type-II censored sample. Let x1:m:n, . . . , xm:m:n denote such
a sample with (r1, . . . , rm) being the progressive Type-II censoring scheme. The likelihood
function based on the sample, x1:m:n, . . . , xm:m:n, is then given by

L(λ) = Cλm
m∏
i=1

[
2e−xi:m:n

1 + e−xi:m:n

]λ(1+ri) 1

1 + e−xi:m:n
, (2.1)

where C = n× (n− 1− r1)× (n− 2− r1 − r2)× · · · × (n−m+ 1− r1 − · · · − rm−1). It is
easy to obtain the maximum likelihood estimator (MLE) of λ to be

λ̂ =
m

T1
, (2.2)

where

T1 =

m∑
i=1

(1 + ri)

[
xi:m:n + ln

(
1 + e−xi:m:n

2

)]
. (2.3)

By the invariance property of the MLE, we can obtain the maximum likelihood estimator
of reliability function R(t;λ) to be

R̂(t) =

[
2e−t

1 + e−t

]λ̂
. (2.4)

3. Bayesian estimation

3.1. Estimation based on a conjugate prior

For a Bayesian inference, we consider a conjugate prior distribution and a noninformative
prior for shape parameter λ, respectively. A natural conjugate prior for the shape parameter
λ of the generalized half logistic distribution is an gamma prior, given by

π(λ) =
βα

Γ(α)
λα−1e−βλ, λ > 0, α > 0, β > 0. (3.1)

It follows, from (3.1), that the posterior distribution of λ is given by

π(λ|x) =
(β + T1)m+α

Γ(m+ α)
λm+α−1e−(β+T1)λ, α > 0, β > 0, (3.2)

where T1 is given in (2.3). That is, λ|x ∼ gamma(m+ α, β + T1).
Substituting λ = − lnR

T2
into (3.2), we obtain the posterior probability density function of

R = R(t;λ) as

π(R|x) =
1

Γ(m+ α)

(
β + T1
T2

)m+α

(− lnR)m+α−1R(β+T1)/T2−1, α > 0, β > 0, (3.3)



980 Yongku Kim · Suk-Bok Kang · Jung-In Seo

where T1 is given in (2.3) and

T2 = t+ ln

[
1 + e−t

2

]
. (3.4)

We compute the posterior modes of λ and R as

λ̃ =
m+ α− 1

β + T1
(3.5)

and

R̃ = exp

{
− (m+ α− 1)T2

β + T1 − T2

}
, (3.6)

respectively.
Under the squared error loss function, the Bayes estimators of λ and R can be obtained

as

λ̃S =
m+ α

β + T1
(3.7)

and

R̃S =

(
β + T1

β + T1 + T2

)m+α

, (3.8)

respectively.
Linex loss function provides the Bayes estimators of λ and R as

λ̃L =
m+ α

c
ln

(
1 +

c

β + T1

)
(3.9)

and

R̃L = −1

c
ln

 ∞∑
j=0

(−1)j
cj

j!

(
β + T1

β + T1 + jT2

)m+α
 , (3.10)

respectively, where c is the shape parameter of linex loss function.
Using the Entropy loss function leads the Bayes estimators of λ and R as

λ̃E =
1

β + T1

(
Γ(m+ α)

Γ(m+ α− p)

)1/p

(3.11)

and

R̃E =

(
1− pT2

β + T1

)m+α
p

, (3.12)

respectively, where p is the shape parameter of Entropy loss function.
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3.2. Estimation based on a noninformative prior

For the situation where no prior information about the shape parameter λ is available,
one may use the quasi density as given by

π(λ) =
1

λd
, λ > 0, d > 0. (3.13)

This contains Jeffery’s noninformative prior as a special case when d = 1. It follows, from
(3.13), that the posterior distribution of λ is given by

π(λ|x) =
λm−dTm−d+1

1

Γ(m− d+ 1)
e−T1λ, m > d. (3.14)

That is, λ|x ∼ gamma(m− d+ 1, T1).
Substituting λ = − lnR

T2
into (3.14), we obtain the posterior probability density function

of R = R(t;λ) as

π(R|x) =
1

Γ(m− d+ 1)

(
T1
T2

)m−d+1

(− lnR)m−dRT1/T2−1, m > d. (3.15)

Corresponding posterior modes of λ and R are

λ̃ =
m− d
T1

(3.16)

and

R̃ = exp

{
− (m− d)T2

T1 − T2

}
, (3.17)

respectively.
Under the squared error loss function, the Bayes estimators of λ and R can be obtained

as

λ̃S =
m− d+ 1

T1
(3.18)

and

R̃S =

(
T1

T1 + T2

)m−d+1

, m > d, (3.19)

respectively.
Linex loss function provides the Bayes estimators of λ and R as

λ̃L =
m− d+ 1

c
ln

(
1 +

c

T1

)
(3.20)

and

R̃L = −1

c
ln

 ∞∑
j=0

(−1)j
cj

j!

(
T1

T1 + jT2

)m−d+1
 , m > d, (3.21)

respectively.
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Using the Entropy loss function leads the Bayes estimators of λ and R as

λ̃E =
1

β + T1

(
Γ(m− d+ 1)

Γ(m− d− p+ 1)

)1/p

(3.22)

and

R̃E =

(
1− pT2

T1

)m−d+1
p

, m > d, (3.23)

respectively.

3.3. Estimation of the scale parameter σ

Considering scale parameter σ leads more general distribution with cdf

f(x;λ, σ) =
λ

σ

[
2e−x/σ

1 + e−x/σ

]λ
1

1 + e−x/σ
. (3.24)

Basically we can consider a joint prior distibution of (λ, σ) and then perform a fully Bayesian
infernce using Markov chain Monte Carlo (MCMC) algorithm. Since the shape parameter
λ is the parameter of interest here, we just estimate the parameter σ and then plug it in.
The nuisance paraeter σ can be estimated by maximizing its marginal likelihood,

L(σ) =

∫
f(x|σ, λ)π(λ)dλ. (3.25)

That is,
σ̂ = arg max

σ>0
L(σ). (3.26)

Note that the marginal likelihood of σ can be obtained by

Γ(m+ α)

β +
∑m
i=1(1 + ri) log

(
1+e−xi:m:n/σ

2e−xi:m:n/σ

) (3.27)

or
Γ(m− d+ 1)∑m

i=1(1 + ri) log
(

1+e−xi:m:n/σ

2e−xi:m:n/σ

) . (3.28)

The variance estimation of λ may require adjustment to allow proper account for the
uncertainty caused by estimating σ because of

V ar(λ|x) = Eσ|x [V ar(λ|x, σ)] + V arσ|x [E(λ|x, σ)] . (3.29)

4. Illustrative examples

In this section, we present two examples to illustrate our estimation methods discussed in
the previous sections.
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4.1. Real data

Consider the data given by Nelson (1982), represents failure log times to breakdown of an
insulating fluid testing experiment (see Table 4.1). A progressively Type-II censored sample
are generated from this data by Viverous and Balakrishnan (1994). The observations and
censoring scheme are given in Table 4.2. In this example, we have n = 16 and m = 8.
From (2.2) and (2.4), the MLEs λ̂ = 0.35001 and R̂(t = 0.5) = 0.90635. Using the formulae
presented in section 3, the Bayes estimators of λ and R(t = 0.5) are calculated. These values
are given in Tables 4.3 and 4.4.

Table 4.1 Failure log times to breakdown of an insulating fluid testing experiment
0.270027 1.02245 1.15057 1.42311 1.54116 1.57898 1.87180 1.99470
2.08069 2.11263 2.48989 3.45789 3.48186 3.52371 3.60305 4.28895

Table 4.2 Progressively type-II censored data
i 1 2 3 4 5 6 7 8
x 0.270027 1.02245 1.15057 1.57898 2.11263 2.48989 3.60305 4.28895
ri 0 0 2 3 0 3 0 0

Table 4.3 Bayes estimators using the gamma prior with α = 1 and β = 1
c = 1.5 and p = 1.5

λ̃S λ̃L λ̃E R̃S R̃L R̃E

0.37726 0.36587 0.32458 0.90000 0.89925 0.89859

Table 4.4 Bayes estimators using the quasi prior with d = 0.5
c = 1.5 and p = 1.5

λ̃S λ̃L λ̃E R̃S R̃L R̃E

0.37189 0.36019 0.31688 0.90137 0.90060 0.89992

4.2. Simulated data

Consider a progressively type-II censored sample of size m = 8 from n = 9 with censoring
scheme r = (0, 0, 3, 4, 0, 4, 0, 0) from the generalized half logistic distribution with shape
parameter λ. We generate λ from the gamma distribution with α = 2.0 and β = 1.5, then
using the generated λ, generate a progressively type-II censored sample of size m = 8 from
sample of n = 19 with censoring scheme r = (0, 0, 3, 4, 0, 4, 0, 0) from the generalized half
logistic distribution. The actual generated population values of λ and R(t = 0.5) are 1.05930
and 0.74261, respectively. The observations and censoring scheme are given in Table 4.5.
From (2.2) and (2.4), the MLEs λ̂ = 1.27272 and R̂(t = 0.5) = 0.69939. Using the formulae
presented in section 3, the Bayes estimators of λ and R(t = 0.5) are calculated. These values
are given in Tables 4.6 and 4.7.
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Table 4.5 Progressively type-II censored sample based on simulated data
i 1 2 3 4 5 6 7 8
x 0.09962 0.20909 0.30184 0.38157 0.47794 0.74326 1.32006 1.61662
ri 0 0 3 4 0 4 0 0

Table 4.6 Bayes estimators using the gamma prior with α = 2 and β = 1.5
c = 1.5 and p = 1.5

λ̃S λ̃L λ̃E R̃S R̃L R̃E

1.2844 1.17457 1.12308 0.70155 0.69699 0.69007

Table 4.7 Bayes estimators using the quasi prior with d = 0.5
c = 1.5 and p = 1.5

λ̃S λ̃L λ̃E R̃S R̃L R̃E

1.11363 0.99871 0.91333 0.73634 0.73101 0.72337

4.3. Simulation assesment

To compare the performance of the Bayes estimators of the shape parameter λ and relia-
bility function R(t;λ) under three types of loss functions such as SELE, LLF, and GELF, we
simulated the mean squared errors of all proposed estimators through Monte Carlo simula-
tion method. Using the method given in section 4.1, the progressively Type-II censored data
from the generalized half logistic distribution, whose shape parameter λ is from the gamma
distribution with (α, β) = {(1.5, 1.5)}, are generated for t = 0.5, sample size n = 20, 30, 40,
and various censoring schemes. Using this data, the mean squared errors of the Bayes estima-
tors of the shape parameter λ and reliability function R(t) under three types of loss functions
are simulated by Monte Carlo method based on 10,000 runs for sample size n = 20, 30, 40
and various choices of censoring under progressively Type-II censored samples. To see more
clear effect of asymmetric loss function, specific values for shape parameter of loss func-
tion are considered. For simplicity in notation, we denote the scheme (0, 0, . . . , n −m) as
((m− 1)× 0, n−m), for example, (10× 0) and (3× 0, 2, 2, 0) denote the progressively cen-
soring schemes (0, 0, . . . , 0) and 0, 0, 0, 2, 2, 0), respectively. These values are given in Tables
4.8 and 4.9.

5. Concluding remarks

In this paper we present the Bayesian and Non-Bayesian estimator of the shpae parameter
λ and reliability function R(t) of generalized half logistic distribution under progressively
Type-II censoring. Bayes estimators under squared error loss function, linex loss function
and Entropy loss function are derived. The MLE’s are also obtained. The MLEs of λ and
R are compared with Bayes estimates under various loss functions in terms of estimated
MSE. We can see that the Bayes estimates are better than their corresponding maximum
likelihood estimates for the considered cases, especially in asymmetric loss function such as
linex.
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Table 4.8 The relative mean squared errors for the estimators of the shape parameter λ and reliability
function R(t;λ) when prior is gamma distribution with α = 1.5 and β = 1.5

λ = 0.754, c = 2 and p = −0.5

n m censoring scheme λ̂ λ̃S λ̃L λ̃E
20 20 (20×0) 0.03604 0.03329 0.02690 0.03179

10 (1 3×0 0 2 2×0 5) 0.09582 0.07456 0.04903 0.06865
10 (5 2×0 5 6×0) 0.09703 0.07515 0.04945 0.06924
10 (3 3×0 2 0 2 2×0 3) 0.09850 0.07625 0.05017 0.07026
5 (0 5 0 10 0) 0.38638 0.14964 0.07172 0.13084

30 30 (30×0) 0.02249 0.02151 0.01860 0.02082
20 (9×0 10 10×0) 0.03577 0.03301 0.02662 0.03151
20 (5 3×0 5 15×0) 0.03607 0.03333 0.02684 0.03180
20 (10 2×0 17×0) 0.03710 0.03426 0.02745 0.03265
15 (5 14×0) 0.05234 0.04604 0.03455 0.04336
15 (10 6×0 5 7×0) 0.05295 0.04672 0.03493 0.04395

40 40 (40×0) 0.01586 0.01543 0.01378 0.01503
20 (15 5 18×0) 0.03544 0.03264 0.02649 0.03121
20 (10 10 18×0) 0.03558 0.03290 0.02645 0.03137
20 (5 16×0 5 5 5) 0.03565 0.03294 0.02656 0.03143
20 (2×0 4×5 14×0) 0.03710 0.03426 0.02745 0.03265
10 (0 15 2×0 5 0 10 3×0) 0.09609 0.07464 0.04890 0.06868

R = 0.809, c = 2 and p = −0.5

n m censoring scheme λ̂ λ̃S λ̃L λ̃E
20 20 (20×0) 0.00173 0.00155 0.00162 0.00158

10 (1 3×0 0 2 2×0 5) 0.00417 0.00317 0.00342 0.00326
10 (5 2×0 5 6×0) 0.00420 0.00319 0.00344 0.00328
10 (3 3×0 2 0 2 2×0 3) 0.00426 0.00324 0.00349 0.00333
5 (0 5 0 10 0) 0.01118 0.00567 0.00644 0.00597

30 30 (30×0) 0.00110 0.00103 0.00106 0.00104
20 (9×0 10 10×0) 0.00172 0.00154 0.00160 0.00156
20 (5 3×0 5 15×0) 0.00173 0.00155 0.00162 0.00158
20 (10 2×0 17×0) 0.00177 0.00159 0.00166 0.00161
15 (5 14×0) 0.00243 0.00207 0.00219 0.00211
15 (10 6×0 5 7×0) 0.00246 0.00210 0.00222 0.00214

40 40 (40×0) 0.00079 0.00075 0.00077 0.00076
20 (15 5 18×0) 0.00170 0.00152 0.00159 0.00154
20 (10 10 18×0) 0.00171 0.00153 0.00160 0.00155
20 (5 16×0 5 5 5) 0.00171 0.00154 0.00160 0.00156
20 (2×0 4×5 14×0) 0.00177 0.00159 0.00166 0.00161
10 (0 15 2×0 5 0 10 3×0) 0.00416 0.00317 0.00342 0.00326

References

Balakrishnan, N., Kannan, N., Lin, C. T. and Wu, S. J. S. (2004). Inference for the extreme value distri-
bution under progressively Type-II censoring. Journal of Statistical Computation and Simulation, 74,
25–45.

Balakrishnan, N., Kannan, N., Lin, C. T. and Ng, H. K. T. (2003). Point and interval estimation for Gaus-
sian distribution based on progressively Type-II censored samples. IEEE Transactions on Reliability,
52, 90–95.

Balakrishnan, N. and Wong K. H. T. (1991). Approximate MLEs for the location and scale parameters
of the half logistic distribution with Type-II right-censoring. IEEE Transactions on Reliability, 40,
140–145.

Balakrishnan, N. and Puthenpura S. (1986). Best linear unbiased estimators of location and scale parame-
ters of the half logistic distribution. Journal of Statistical Computation and Simulation, 25, 193–204.

Calabria, R. and Pulcini, G (1994). An engineering approach to Bayes estimation for the Weibull distribu-



986 Yongku Kim · Suk-Bok Kang · Jung-In Seo

Table 4.9 The relative mean squared errors for the estimators of the shape parameter λ and reliability
function R(t;λ) when prior is quasi density with d = 1.5

λ = 2.189, c = 2 and p = −0.5

n m censoring scheme λ̂ λ̃S λ̃L λ̃E
20 20 (20×0) 0.30378 0.28002 0.20977 0.27080

10 (1 3×0 0 2 2×0 5) 0.80760 0.68851 0.37639 0.64210
10 (5 2×0 5 6×0) 0.81783 0.69813 0.38008 0.65143
10 (3 3×0 2 0 2 2×0 3) 0.83020 0.70836 0.38212 0.66067
5 (0 5 0 10 0) 3.25661 2.47006 0.68486 2.16357

30 30 (30×0) 0.18958 0.17932 0.14652 0.17531
20 (9×0 10 10×0) 0.30150 0.27773 0.20747 0.26851
20 (5 3×0 5 15×0) 0.30397 0.27968 0.20762 0.27021
20 (10 2×0 17×0) 0.31267 0.28690 0.20826 0.27673
15 (5 14×0) 0.44113 0.39535 0.26514 0.37754
15 (10 6×0 5 7×0) 0.44629 0.39885 0.26356 0.38026

40 40 (40×0) 0.13365 0.12786 0.10918 0.12558
20 (15 5 18×0) 0.29871 0.27633 0.21084 0.26778
20 (10 10 18×0) 0.29984 0.27563 0.20454 0.26621
20 (5 16×0 5 5 5) 0.30047 0.27672 0.20700 0.26751
20 (2×0 4×5 14×0) 0.31267 0.28690 0.20826 0.27673
10 (0 15 2×0 5 0 10 3×0) 0.80985 0.68934 0.37263 0.64228

R = 0.541, c = 2 and p = −0.5

n m censoring scheme λ̂ λ̃S λ̃L λ̃E
20 20 (20×0) 0.00587 0.00542 0.00554 0.00553

10 (1 3×0 0 2 2×0 5) 0.01233 0.01049 0.01091 0.01094
10 (5 2×0 5 6×0) 0.01238 0.01056 0.01096 0.01101
10 (3 3×0 2 0 2 2×0 3) 0.01258 0.01071 0.01113 0.01117
5 (0 5 0 10 0) 0.02570 0.01967 0.02061 0.02117

30 30 (30×0) 0.00385 0.00364 0.00370 0.00370
20 (9×0 10 10×0) 0.00578 0.00533 0.00545 0.00544
20 (5 3×0 5 15×0) 0.00584 0.00537 0.00550 0.00549
20 (10 2×0 17×0) 0.00594 0.00543 0.00557 0.00555
15 (5 14×0) 0.00783 0.00701 0.00722 0.00721
15 (10 6×0 5 7×0) 0.00794 0.00706 0.00729 0.00728

40 40 (40×0) 0.00281 0.00269 0.00272 0.00272
20 (15 5 18×0) 0.00575 0.00535 0.00545 0.00545
20 (10 10 18×0) 0.00576 0.00529 0.00542 0.00540
20 (5 16×0 5 5 5) 0.00579 0.00534 0.00546 0.00545
20 (2×0 4×5 14×0) 0.00594 0.00543 0.00557 0.00555
10 (0 15 2×0 5 0 10 3×0) 0.01228 0.01041 0.01083 0.01087

tion. Microelectronics and Reliability, 34, 789–802.
Kang, S. B., Cho, Y. S. and Han, J. T. (2008). Estimation for the half logistic distribution under progressive

Type-II censoring. Communications of the Korean Statistical Society, 15, 815–823.
Kang, S. B., Cho, Y. S. and Han, J. T. (2009). Estimation for the half logistic distribution based on double

hybrid censored samples. Communications of the Korean Statistical Society, 16, 1055–1066.
Kang, S. B. and Park, Y. K. (2005). Estimation for the half-logistic distribution based on multiply Type-II

censored samples. Journal of the Korean Data & Information Science Society, 16, 145–156.
Kim, Y., Kang, S. B. and Seo, J. I. (2011). Bayesian estimations on the exponentiated half triangle dis-

tribution under Type-I hybrid censoring. Journal of the Korean Data & Information Science Society,
22, 565–574.

Nelson, W. B (1982). Applied life data analysis, John Willey & Sons, New York.
Seo, E. H. and Kang, S. B. (2007). AMLEs for Rayleigh distribution based on progressively Type-II censored

data. The Korean Communications in Statistics, 14, 329–344.
Varian, H. R. (1975). A Bayesian approach to real estate assessment. In Studies in Bayesian Econometrics



Bayesian estimation in the generalized half logistic distribution under progressively type-II censoring 987

and Statistics in Honor of Leonard J. Savage, edited by S. E. Feinberg and A. Zellner, North Holland,
Amsterdam, 195–208.

Viverous, R. and Balakrishnan, N. (1994). Interval estimation of parameters of life from progressively
censored data. Technometrics, 36, 84–91.

Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss function. Journal of American
Statistical Association, 81, 446–451.


