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Abstract

The exponenetiated distribution has been used in reliability and survival analysis
especially when the data is censored. In this paper, we derive Bayesian estimation of
shape parameter and reliability function in the exponenetiated half triangle distribution
based on Type-I hybrid censored data. Here we consider conjugate prior and nonin-
formative prior and obtained corresponding posterior distributions. As an illustration,
the mean square errors of the estimates are computed. Comparisons are made between
these estimators using Monte Carlo simulation study.

Keywords: Bayesian estimation, exponenetiated half triangle distribution, hybrid Type-
I censoring, reliability.

1. Introduction

The exponentiated half triangle distribution (EHTD), has the probability density function
(pdf), and cumulative distribution function (cdf), given respectively, by

f(x) = 2
λ

σ

1−

(
1−

x

σ

)2
λ−1(1−

x

σ

)
, λ, σ > 0, 0 < x < σ, (1.1)

and

F (x) =

1−

(
1−

x

σ

)2
λ , λ, σ > 0, 0 < x < σ. (1.2)

For the special case λ = 1, this distribution is the half triangle distribution. A triangle
distribution was applied to a kernel function in non-parametric density estimation. Johnson
(1997) studied the possibility of using the more intuitively obvious triangular distribution as
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a proxy for the beta distribution. Some properties of the triangular distribution was studied
by Balakrishnan and Nevzorov (2003). Kang (2007) derived some explicit estimators of the
scale parameter in a half-triangle distribution under multiply Type-II censoring by several
approximate maximum likelihood estimation methods. Han and Kang (2008) derived some
approximate maximum likelihood estimators (AMLEs) and maximum likelihood estimator
(MLE) of the scale parameter in the half-triangle distribution based on progressively Type-II
censored sample. From (1.2), it is easy to write the reliability function of EHTD, respectively,
as

R(t) = 1−

1−

(
1−

t

σ

)2
λ , λ, σ > 0, 0 < t < σ. (1.3)

The most commonly used censoring schemes are Type-I and Type-II censoring schemes.
In the conventional Type-I censoring scheme, the experiment continues up to a pre-specified
time T . On the other hand, the conventional Type-II censoring scheme requires the experi-
ment to continue until a pre-specified number of failures r ≤ n occur. The mixture of Type-I
and Type-II censoring schemes is known as a hybrid censoring scheme (see Figure 1.1).
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Figure 1.1 The Type-I hybrid censoring scheme

Let us assume that the ordered lifetimes be denoted by X1:n, X2:n, · · · , Xn:n. Epstein
(1954) first introduced Type-I hybrid censoring scheme, and considered lifetime experi-
ments assuming that the lifetime of each unit follows an exponential distribution. Kunda
(2007) developed maximum likelihood estimators (MLEs) and the approximate maximum
likelihood estimators (AMLEs) for the unknown parameters under Type-I hybrid censoring.
He obtained the Bayes estimates and the corresponding highest posterior density credible
intervals of the unknown parameters under suitable priors on the unknown parameters and
using the Gibbs sampling procedure. Recently, Kang et al. (2009) derived some estimators
of the scale parameter of the half triangle distribution based on Type-I hybrid censored
samples.

In Bayesian estimation, we consider two types of loss functions. The first is the squared
error loss function (quadratic loss) which is symmetrical, and associates equal importance to
the losses due to overestimation and underestimation of equal magnitude. But in life testing
and reliability problems, the nature of losses are not always symmetric. For example, if an
overestimate is usually much more serious than an underestimate, the use of a symmetrical
loss function might be inappropriate. As a useful alternative to the squared error loss func-
tion, the second is the linex (linear-exponential) loss function which is asymmetric. It was
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introduced by Varian (1975) and got a lot of popularity due to Zellner (1986). The linex loss

function may be expressed as l(4) ∝ exp(c4)− c4− 1, c 6= 0, where 4 = θ̂ − θ. The sign
and magnitude of the shape parameter c reflects the direction and degree of asymmetry,
respectively. when c is positive, the overestimation is more serious than underestimation
and the situation is reverse when c is negative. If c tends to zero the linex loss function
tends to squared error loss function. By Zellner (1986), the Bayes estimator of θ, denoted

by θ̂l under the linex loss function is given by θ̂l = −
1

c
ln {Eπ [exp(−cθ)]}, provided that the

expectation Eπ [exp(−cθ)] exists and is finite.

2. Maximum Likelihood Estimation

Under the Type-I hybrid censoring scheme, it is assumed that r and T are known in
advance and the experiment is terminated at a random time T ∗ = min {Xr:n, T}, where
1 ≤ r ≤ n and T ∈ (0,∞). Therefore, under this censoring scheme we have one of the two
following types of observations:

Case Ⅰ: {x1:n < · · · < xr:n} if xr:n < T .
Case II : {x1:n < · · · < xd:n} if d < r and xd:n < T < xd+1:n.

It may be mentioned that the (d + 1)th failure does not take place before times point T
for Case II.

In this section, we provide the MLEs of λ for two different cases. The likelihood functions
for two different cases are given by

Case Ⅰ

L(λ) ∝ λr
r∏
i=1

Uλ−1i (1− Uλr )n−r, (2.1)

where Ui = 1−
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)2
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Case II

L(λ) ∝ λd
d∏
i=1

Uλ−1i (1− UλT )n−d, (2.2)

where UT = 1−

(
1−

T

σ

)2

. Therefore, combining Case I and Case II, we can obtain following

likelihood function

L(λ) ∝ λk
k∏
i=1

Uλ−1i (1− Uλ)n−k, (2.3)

where k denotes the number of failures and U = Ur if k = r, and U = UT if k < r. For now,
we assume that the scale parameter σ is known. But we will deal with it later. From (2.3),
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the natural logarithm of the likelihood function is given by

l(λ) = k log λ+ (λ− 1)

k∑
i=1

logUi + (n− k) log(1− Uλ). (2.4)

The MLE of λ, denote by λ̂, is given by

λ̂ =
k

(n− k)(U−λ̂ − 1)−1 logU +
∑k
i=1 logU−1i

. (2.5)

Since the equation (2.5) can not be solved analytically for λ̂, some numerical method must
be employed. The corresponding MLE R(t) of the reliability function is given by (1.3) after

replacing λ by its MLE λ̂. We consider sample size n = 20, 30, 40 and we evaluate the mean
squared errors of the MLEs λ̂ and R̂ using the Bisection method. These values are given in
Tables 4.1 and 4.2.

3. Bayesian estimation

For a Bayesian inference, we consider a conjugate prior distribution and a noninformative
prior for shape parameter λ. respectively.

3.1. Estimation based on a conjugate prior

A natural family of conjugate prior for shape parameter λ is a gamma prior, given by

π(λ) =
βα

Γ(α)
λα−1e−βλ, α, β > 0, λ > 0. (3.1)

Applying Bayes theorem, we obtain from Equation (2.3) and (3.1), the posterior density
of λ as

π(λ|x) =
wk+α

M1Γ(k + α)
λk+α−1e−wλ(1− Uλ)n−k, α, β > 0, λ > 0, (3.2)

where

M1 =
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j=0

(−1)j
(
n− k
j

)(
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jV

w

)−(k+α)
, w = β +

k∑
i=1

Vi, V = logU−1, and Vi = logU−1i .

Consider the reliability R = R(t) is parameter itself. Replacing λ in terms of R by that
of (3.1), we obtain posterior density function of R as

π(R|x) =
P k+α

M1Γ(k + α)
[G(R)]

k+α−1
e[(1−P )G(R)]

(
1− UG(R)/Vt

)n−k
, 0 < R < 1, (3.3)

where G(R) = log(1−R)−1, P = w/Vt, Vt = logU−1t and Ut = 1−

(
1−

t

σ

)2

.
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Under the squared error loss function, the Bayes estimators of λ and R can be obtained
as

λ̂s =
k + α

w

M2

M1
(3.4)

and

R̂s = 1−
M4

M1
, (3.5)

where
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The Bayes estimators of λ and R under linex loss function are given by
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c
log
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3.2. Estimation based on a non-informative prior

For the situation where no prior information about the shape parameter λ is available,
one may use the quasi density as given by

π(λ) =
1

λm
, λ > 0, m > 0. (3.8)
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This contains Jeffery’s noninformative prior as a special case when m = 1. It follows, from
(3.8), that the posterior distribution of λ is given by

π(λ|x) =
Qk−m+1

N1Γ(k −m+ 1)
λk−me−Qλ(1− Uλ)n−k, λ > 0, (3.9)

where N1 =
∑n−k
j=0 (−1)j

(
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j

)(
1 +

jV

Q

)−(k−m+1)

and Q =
∑k
i=1 Vi.

Consider the reliability R = R(t) is parameter itself. Replacing λ in terms of R by that
of (3.9), we obtain posterior density function of R as

π(R|x) =
Zk−m+1

N1Γ(k −m+ 1)
[G(R)]

k−m
e[(1−Q)G(R)]

(
1− UG(R)/Vt

)n−k
, 0 < R < 1, (3.10)

where G(R) is given in (3.3) and Z = Q/Vt. Under the squared error loss function, the

Bayes estimators of λ and R can be obtained as
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Q
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The Bayes estimators of λ and R under linex loss function are given by

λ̂l =
1

c
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)
(3.13)

and

R̂l = 1−
1
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, (3.14)
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where

N3 =
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From in section 3.1 and 3.2 formula, the mean squared errors of the proposed estimators
are simulated by Monte Carlo method based on 10,000 runs for sample size n = 20, 30, 40
and various choices of censoring under Type- hybrid censored samples. These values are
given in Tables 4.1 and 4.2.

3.3. Estimation of the scale parameter σ

Assuming that the scale parameter σ is known at the beginning, but basically we can
consider a joint prior distribution of (λ, σ) and then make a inference of it using Markov
chain Monte Carlo (MCMC) algorithm. Since the shape parameter λ is the parameter of
interest here, we just estimate the scale parameter σ and then plug it in. The nuisance
parameter σ can be estimated by maximizing its marginal likelihood,

L(σ) =

∫
f(x|σ, λ)π(λ)dλ. (3.15)

That is,

σ̂ = arg maxL(σ)σ>0. (3.16)

Note that the marginal likelihood of σ can be obtained by

Γ(k + α)

wk+α

n−k∑
j=0

(−1)j
(
n− k
j

)(
1 +

jV

w

)−(k+α)
(3.17)

or

Γ(k −m+ 1)

wk−m+1

n−k∑
j=0

(−1)j
(
n− k
j

)(
1 +

jV

Q

)−(k−m+1)

. (3.18)

4. Simulation assesment

To compare the performance of the Bayes estimators of λ and R(t) under the squared
error loss function and the linex loss function, we simulated the mean squared errors of all
proposed estimators through Monte Carlo simulation method. The prior parameters chosen
(α, β) = (3.0, 3.0), which yield the generated value of λ = 0.83676 as the true value. The
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true value of R(t) is computed to be R(0.5) = 0.21394 when (α, β) = (3.0, 3.0). That is,
gamma prior with (α, β) = (3.0, 3.0) is an informative prior for true shape parameter. As an
alternative, a Jeffery’s noninformative prior for λ is considered (i.e. m = 1 ). Using the true
value of λ, the Type-I hybrid censored data from the standard exponentiated half triangle
distribution are generated for sample size n = 20, 30, 40 and different r and T values. Using
this data, the mean squared errors of the Bayes estimators of λ and R(t) under the squared
error loss function and the linex loss function are simulated by Monte Carlo method based
on 10,000 runs for sample size n = 20, 30, 40 and different r and T values under Type-I
hybrid censored samples. To see more clear effect of asymmetric loss function, we consider
a large positive value c = 10 for reliability function while relatively small value c = 2 is
considered for shape parameter. However, results vary slightly depending on the choice of c
value. These relative mean squared errors are given in Tables 4.1 and 4.2.

Table 4.1 The relative mean squared errors for the estimators of λ and R(t) when prior is gamma
distribution with α = 3.0 and β = 3.0

T n r λ̂ λ̂s λ̂l (c = 2) R̂ R̂s R̂l (c = 10)

0.5

10
10 0.076736 0.067572 0.044679 0.003558 0.002887 0.002151
8 0.075657 0.068566 0.045416 0.003523 0.002926 0.002182
5 0.078602 0.069263 0.045424 0.003651 0.002958 0.002192

20
20 0.041352 0.037319 0.029644 0.001975 0.001706 0.001487
15 0.042160 0.037694 0.029974 0.002007 0.001722 0.001501
5 0.047120 0.040754 0.031625 0.002239 0.001856 0.001584

30
30 0.026361 0.024030 0.020502 0.001282 0.001136 0.001066
25 0.026686 0.024035 0.020503 0.001293 0.001135 0.001065
20 0.026870 0.024135 0.020666 0.001304 0.001143 0.001071

0.7

10
10 0.076589 0.067318 0.044588 0.003553 0.002878 0.002147
8 0.075658 0.068258 0.045275 0.003523 0.002915 0.002176
5 0.078607 0.069249 0.045422 0.003651 0.002958 0.002192

20
20 0.041352 0.037219 0.029590 0.001974 0.001701 0.001484
15 0.042130 0.037692 0.029982 0.002006 0.001722 0.001501
5 0.047120 0.040754 0.031625 0.002239 0.001856 0.001584

30
30 0.026451 0.023983 0.020469 0.001285 0.001134 0.001064
25 0.026635 0.023994 0.020470 0.001291 0.001134 0.001064
20 0.026869 0.024119 0.020610 0.001304 0.001142 0.001070

0.9

10
10 0.076593 0.067321 0.044594 0.003553 0.002878 0.002147
8 0.075659 0.068253 0.045273 0.003523 0.002915 0.002176
5 0.078607 0.069249 0.045422 0.003651 0.002958 0.002192

20
20 0.041354 0.037225 0.029596 0.001974 0.001702 0.001485
15 0.042130 0.037688 0.029979 0.002006 0.001721 0.001501
5 0.047120 0.040754 0.031625 0.002239 0.001856 0.001584

30
30 0.026398 0.023981 0.020468 0.001283 0.001134 0.001064
25 0.026633 0.023990 0.020468 0.001291 0.001133 0.001063
20 0.026869 0.024119 0.020610 0.001304 0.001142 0.001070

5. Concluding remarks

In this paper we present the Bayesian and Non-Bayesian estimators of the shape parameter
λ and reliability function R(t) of exponentiated half triangle distribution under Type-I
hybrid censoring. Bayes estimators under squared error loss function and linex loss function
are derived. The MLEs are also obtained. The MLEs of λ and R are compared with Bayes
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Table 4.2 The relative mean squared errors for the estimators of λ and R(t) when prior is quasi density
with m = 1.0

T n r λ̂ λ̂s λ̂l (c = 2) R̂ R̂s R̂l (c = 10)

0.5

10
10 0.076736 0.121400 0.073385 0.003558 0.004742 0.003337
8 0.075657 0.124780 0.075074 0.003523 0.004830 0.003404
5 0.078602 0.125620 0.074951 0.003651 0.004898 0.003416

20
20 0.041352 0.047060 0.037251 0.001975 0.002125 0.001797
15 0.042160 0.047660 0.037743 0.002007 0.002149 0.001817
5 0.047120 0.053280 0.040872 0.002239 0.002388 0.001968

30
30 0.026361 0.027490 0.023723 0.001282 0.001300 0.001184
25 0.026686 0.027530 0.023670 0.001293 0.001301 0.001184
20 0.026870 0.027620 0.024213 0.001304 0.001309 0.001190

0.7

10
10 0.076589 0.120060 0.072970 0.003553 0.004705 0.003321
8 0.075658 0.123000 0.074511 0.003523 0.004787 0.003382
5 0.078607 0.125360 0.074890 0.003651 0.004893 0.003414

20
20 0.041352 0.046890 0.037166 0.001974 0.002118 0.001793
15 0.042130 0.047630 0.037745 0.002006 0.002148 0.001817
5 0.047120 0.053280 0.040872 0.002239 0.002388 0.001968

30
30 0.026451 0.027440 0.023612 0.001285 0.001298 0.001183
25 0.026635 0.027470 0.023633 0.001291 0.001298 0.001182
20 0.026869 0.027610 0.023792 0.001304 0.001309 0.001190

0.9

10
10 0.076593 0.120000 0.072960 0.003553 0.004704 0.003320
8 0.075659 0.122970 0.074501 0.003523 0.004787 0.003381
5 0.078607 0.125360 0.074890 0.003651 0.004893 0.003414

20
20 0.041354 0.046900 0.037170 0.001974 0.002118 0.001793
15 0.042130 0.047630 0.037741 0.002006 0.002147 0.001817
5 0.047120 0.053280 0.040872 0.002239 0.002388 0.001968

30
30 0.026398 0.027430 0.023611 0.001283 0.001298 0.001182
25 0.026633 0.027470 0.023630 0.001291 0.001298 0.001182
20 0.026869 0.027610 0.023792 0.001304 0.001309 0.001190

estimates under squared error loss function and linex loss function in terms of estimated
MSE. We can see that the Bayes estimates under squared error loss function is generally more
efficient than Bayes estimates under linex loss function and their corresponding maximum
likelihood estimates for the considered cases.
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