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Abstract
Exponentiated distribution has been used in reliability and survival analysis especially when the data is cen-

sored. In this paper, we derive Bayesian estimation of the shape parameter, reliability function and failure rate
function in the exponentiated distribution family based on Type-II right censored data. We here consider conju-
gate prior and noninformative prior and corresponding posterior distributions are obtained. As an illustration, the
mean square errors of the estimates are computed. Comparisons are made between these estimators using Monte
Carlo simulation study.
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1. Introduction

For a random variable with probability density function u(x) and cumulative distribution function
U(x), its exponentiated distribution has the probability density function(pdf), and cumulative distri-
bution function(cdf), given respectively, by

f (x; λ) = λU(x)λ−1u(x) (1.1)

and

F(x; λ) = [U(x)]λ , (1.2)

where λ > 0 is shape parameter of interest.
For the special case λ = 1, this is the original one. For reliability and survival analysis, a half

logistic distribution or a half triangle distribution can be considered. These have been used exten-
sively in reliability and survival analysis particularly when the data is censored. For the half logistic
distribution and the half triangle distribution,

U(x) =
[
1 − e−

x
σ

1 + e−
x
σ

]
, x > 0, σ > 0

and

U(x) =
[
1 −

(
1 − x

σ

)2
]
, 0 < x < σ, σ > 0,
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respectively, where σ is a scale parameter. Inferences for the half logistic distribution were dis-
cussed by several authors. Balakrishnan and Puthenpura (1986) introduced the best linear unbiased
estimators of location and scale parameters of the half logistic distribution through linear functions
of order statistics. Balakrishnan and Wong (1991) obtained approximate maximum likelihood esti-
mates(AMLEs) for the location and scale parameters of the half logistic distribution with Type-II right
censored sample. Recently, Kang et al. (2008) derived the AMLEs and maximum likelihood estimator
of the scale parameter in a half logistic distribution based on progressively Type-II censored samples.
A triangle distribution was applied to a kernel function in non-parametric density estimation. Johnson
(1997) studied the possibility of using the more intuitively obvious triangular distribution as a proxy
for the beta distribution. Some properties of the triangular distribution was studied by Balakrishnan
and Nevzorov (2003).

From (1.1) and (1.2), the reliability and failure rate function of exponentiated distribution family
(EDF) are obtained, respectively, by

R(t) = 1 − [U(t)]λ (1.3)

and

h(t) =
f (t)
R(t)
=
λU(t)λ−1u(t)
1 − [U(t)]λ

, (1.4)

respectively.
In Bayesian estimation, we consider two types of loss functions. The first is the squared error loss

function (quadratic loss) which is symmetrical, and associates equal importance to the losses due to
overestimation and underestimation of equal magnitude. But in life testing and reliability problems,
the nature of losses are not always symmetric. For example, if an overestimate is usually much more
serious than an underestimate, the use of a symmetrical loss function might be inappropriate. As a
useful alternative to the squared error loss function, the second is the linex (linear-exponential) loss
function which is asymmetric. It was introduced by Varian (1975) became popular due to Zellner
(1986). The linex loss function may be expressed a l(∆) ∝ exp(c∆) − c∆ − 1, c , 0, where ∆ = θ̂ − θ.
The sign and magnitude of the shape parameter c reflects the direction and degree of asymmetry,
respectively. When c is positive, the overestimation is more serious than underestimation and the
situation is reverse when c is negative. If c tends to zero, the linex loss function tends to squared error
loss function. By Zellner (1986), the Bayes estimator of θ, denoted by θ̂l under the linex loss function
is given by θ̂l = −1(1/c) log

{
Eπ

[
exp(−cθ)

]}
, provided that the expectation Eπ

[
exp(−cθ)

]
exists and is

finite.

2. Maximum Likelihood Estimation

First, we derive the maximum likelihood estimator of the shape parameter and reliability function
under the Type-II right censoring, where the test terminates as soon as the rth item fails (r < n). Let
x1, . . . , xr denote the observed failure times for first r components from an exponentiated distribution
having a pdf f (x; λ) and x(1), . . . , x(r) denote corresponding order statistics of the random sample
x1, . . . , xr. Then, the likelihood function of r failure items is given by

L(λ) =
r!

(n − r)!
λr

r∏
i=1

(ui)Uλ−1
i

(
1 − Uλ

r

)n−r
, (2.1)
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where ui = u(x(i)), Ui = U(x(i)) and Ur = U(x(r)). If r = n, then Equation (2.1) reduces to complete
data. In general, the original distribution has its own parameter, say σ. That is, U(x) = U(x;σ). For
now, we assume that the parameter σ is known and left to be dealt with later.

Form (2.1), the natural logarithm of the likelihood function is given by

log L(λ) = K + r log λ + (λ − 1)
r∑

i=1

log Ui + (n − r) log
(
1 − Uλ

r

)
,

where K is a constant. The MLE of λ, denote by λ̂, is given by

λ̂ =
r

(n − r)
(
U−λ̂r − 1

)−1
log Ur −

∑r
i=1 log Ui

. (2.2)

This equation is in implicit form, so it may be subsequently solved with a numerical method such as
Newton-Raphson or Bisection. The MLE of reliability function R(t) may be obtained by replacing λ
by λ̂ in Equation (1.3), then the MLE of the cumulative failure rate function H(t) = − log R(t) can be
obtained.

3. Bayesian Estimation

The natural family of conjugate prior for λ is a gamma distribution with pdf

π(λ) =
βα

Γ(α)
λα−1e−βλ, α > 0, β > 0. (3.1)

Applying Bayes theorem, we obtain from Equation (2.1) and (3.1) the posterior density of λ as

π(λ|x) =
T r+α

M1Γ(r + α)
λr+α−1e−Tλ

(
1 − Uλ

r

)n−r
, (3.2)

where M1 =
∑n−r

j=0(−1) j
(

n−r
j

)
(1 + jVr/T )−(r+α), T = β +

∑r
i=1 Vi, Vr = log U−1

r and Vi = log U−1
i . Refer

to Appendix for detailed proofs in this section.

3.1. Estimation of shape parameter λ

The Bayes estimator of λ under squared error loss function is given by

λ̂s =
r + α

T
M2

M1
,

where M2 =
∑n−r

j=0(−1) j
(

n−r
j

)
(1 + jVr/T )−(r+α+1).

The Bayes estimator of λ under linex loss function is given by

λ̂l =
1
c

log
(

M1

M3

)
,

where M3 =
∑n−r

j=0(−1) j
(

n−r
j

)
(1 + (c + jVr)/T )−(r+α) and c is the scale parameter of linex loss function.
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The 100(1 − α)% HPD credible interval (lλ, uλ) of λ is given by the simultaneous solution of the
equations

1 − α =
n−r∑
j=0

(−1) j
(
n − r

j

)
1

M1

(
T

T − j log Ur

)r+α

× [
ΓI((T − j log Ur)uλ, r + α) − ΓI((T − j log Ur)lλ, r + α)

]
and (

uλ
lλ

)r+α (
1 − Uuλ

r

1 − U lλ
r

)n−r

= eT (uλ−lλ),

where ΓI(a, b) = 1/Γ(b)
∫ a

0 zb−1e−zdz, the incomplete gamma function.

3.2. Estimation of reliability function R

Consider the reliability function R = R(t) is parameter itself. Replacing λ in terms of R by that of
(3.1), we obtain posterior density function of R as

π(R|x) =
Pr+α

M1Γ(r + α)
[G1(R)]r+α−1 exp [(1 − P)G1(R)]

(
1 − U

G1(R)
Vt

r

)n−r

, (3.3)

where G1(R) = log(1 − R)−1 and P = T/Vt.
Assuming the quadratic loss is appropriate, the Bayes estimator of reliability function R is

R̂s =
M4

M1
,

where M4 =
∑n−r

j=0(−1) j
(

n−r
j

)
[(1 + jVr/T )−(r+α) − {1 + ( jVr + Vt)/T }−(r+α)].

Under linex loss function, the Bayes estimator of R is

R̂l = 1 − 1
c

log
(

M5

M1

)
,

where M5 =
∑∞

i=0 ci/i!
∑n−r

j=0(−1) j
(

n−r
j

)
{1 + ( jVr + iVt)/T }−(r+α).

3.3. Estimation of cumulative failure rate function H

To derive the Bayes estimator of the cumulative failure rate function H(t) = − log R(t), we first obtain
the posterior density function of H = H(t), which can be given by

π(H|x) =
Pr+α

M1Γ(r + α)
e−H

1 + e−H [G2(H)]r+α−1 exp [PG2(H)]
(
1 − UG2(H)/Vt

r

)n−r
,

where G2(H) = log(1 − e−H)−1.
The Bayes estimator of H relative to quadratic loss is

Ĥs =
M6

M1
,
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where M6 =
∑∞

i=1
∑n−r

j=0 (−1) j/i
(

n−r
j

)
{1 + ( jVr + iVt)/T }−(r+α).

When the linex loss function is appropriate, the Bayes estimator of H is

Ĥl =
1
c

log
(

M1

M7

)
,

where M7 =
∑c

i=0
∑n−r

j=0(−1)i+ j
(

n−r
j

)(
c
i

)
{1 + ( jVr + iVt)/T }−(r+α).

3.4. Noninformative prior for λ

For the situation where no prior information about the shape parameter λ is available, one may use
the quasi density as given by

π(λ) =
1
λd , λ > 0, d > 0. (3.4)

This contains Jeffery’s noninformative prior as a special case when d = 1. It follows, from (2.1) and
(3.4), that the posterior distribution of λ is given by

π(λ|x) =
Qr−d+1

N1Γ(r − d + 1)
λr−de−Tλ

(
1 − Uλ

r

)n−r
, (3.5)

where N1 =
∑n−r

j=0(−1) j
(

n−r
j

)
(1 + jVr/Q)−(r−d+1) and Q =

∑r
i=1 Vi.

The Bayes estimator of λ under squared error loss function is given by

λ̃s =
r − d + 1

Q
N2

N1
,

where N2 =
∑n−r

j=0(−1) j
(

n−r
j

)
(1 + jVr/Q)−(r−d+2).

The Bayes estimator of λ under linex loss function is given by

λ̃l =
1
c

log
(

N1

N3

)
,

where N3 =
∑n−r

j=0(−1) j
(

n−r
j

)
{1 + (c + jVr)/Q}−(r−d+1) and c is the scale parameter of linex loss func-

tion.
The 100(1 − α)% HPD credible interval (lλ, uλ) of λ is given by the simultaneous solution of the

equations

1 − α =
n−r∑
j=0

(−1) j
(
n − r

j

)
1

N1

(
Q

Q − j log Ur

)r−d+1

× [
ΓI((Q − j log Ur)uλ, r − d + 1) − ΓI((Q − j log Ur)lλ, r − d + 1)

]
and (

uλ
lλ

)r−d+1 (
1 − Uuλ

r

1 − U lλ
r

)n−r

= eQ(uλ−lλ),

where ΓI(a, b) = 1/Γ(b)
∫ a

0 zb−1e−zdz, the incomplete gamma function. Similarly, we can estimate the
reliability function R and the cumulative failure rate function H.
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3.5. Estimation of the distribution U(x)

If the parameterσ of original cdf U(x) is known at the beginning we can consider a joint prior distribu-
tion of (λ, σ) and then perform a fully Bayesian inference using a Markov chain Monte Carlo(MCMC)
algorithm. We simply estimate the parameter σ and then plug it in since the shape parameter λ is the
parameter of interest. The nuisance parameter σ can be estimated by maximizing its marginal likeli-
hood,

L(σ) =
∫

f (x|σ, λ)π(λ)dλ. (3.6)

That is,

σ̂ = arg max
σ>0

L(σ).

Note that the marginal likelihood of σ can be obtained by

Γ(r + α)
T r+α

n−r∑
j=0

(−1) j
(
n − r

j

) (
1 +

jVr

T

)−(r+α)

or

Γ(r − d + 1)
Qr−d+1

n−r∑
j=0

(−1) j
(
n − r

j

) (
1 +

jVr

Q

)−(r−d+1)

.

The variance estimation of λ may require adjustment to allow proper account for the uncertainty
caused by estimating σ because of

Var(λ|x) = Eσ|x [Var(λ|x, σ)] + Varσ|x [E(λ|x, σ)] .

4. Illustrative Examples

In this section, we present two examples to illustrate previously discussed estimation methods.

4.1. Real data

Mann and Fertig (1973) give failure times to airplane components subjected to a life test. The expo-
nentiated half logistic distribution has often been found as a suitable model in such situations. The
data are Type-II censored: 13 components were placed on test and the test was terminated at time of
failure. Failure times (in hours) of the 10 components that failed were given as

0.22 0.50 0.88 1.00 1.32 1.33 1.54 1.76 2.50 3.00

In this example, we assume that underlying distribution of this data is an exponentiated half logistic
distribution based on Type-II censoring (i.e., n = 13 and r = 10). From (2.2), the MLEs λ̂ = 1.54991,
R̂(t = 0.3) = 0.947761 and Ĥ(t = 0.3) = 0.05365 are obtained. To employ the Newton-Raphson
method, the second derivatives of the log-likelihood function are required; however, these may be
complicated and the Bisection method is used since it is based on halving the interval. Using the
formulae presented in Section 3, the Bayes estimators of λ, R(t = 0.3) and H(t = 0.3) are calculated
under two types of loss functions such as the squared error loss function and the linex loss function.
These values are given in Table 1 and Table 2. The 95% HPD credible intervals for the shape parameter
λ based on gamma prior and quasi prior are (1.2139, 1.9547) and (1.1231, 1.9809), respectively.
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Table 1: Bayes estimators using the gamma prior with α = 3.0 and β = 2.5.
λ̃S λ̃L(c=0.5) R̃S (t = 0.3) R̃L(c=5)(t = 0.3) H̃S (t = 0.3) H̃L(c=5)(t = 0.3)

1.59129 1.55297 0.93767 0.93331 0.06554 0.0602

Table 2: Bayes estimators using the quasi prior with d = 2.
λ̃S λ̃L(c=0.5) R̃S (t = 0.3) R̃L(c=5)(t = 0.3) H̃S (t = 0.3) H̃L(c=5)(t = 0.3)

1.58842 1.53804 0.93265 0.92544 0.07154 0.06369

Table 3: Relative mean squared errors for the estimators of the shape parameter λ, R(t) and H(t) when prior is
gamma density with α = 6.0 and β = 1.5.

n r λ̂ λ̃S λ̃L(c=3) R̂ R̃S R̃L(c=5) Ĥ H̃S H̃L(c=2)

20 20 0.1437 0.1567 0.0886 0.0010 0.0005 0.0003 0.0016 0.0007 0.0010
15 0.1324 0.1477 0.0938 0.0010 0.0005 0.0003 0.0014 0.0006 0.0009
30 0.0734 0.0900 0.0442 0.0006 0.0003 0.0002 0.0008 0.0004 0.0006

30 25 0.0701 0.0869 0.0460 0.0005 0.0003 0.0002 0.0008 0.0004 0.0006
20 0.0664 0.0838 0.0484 0.0005 0.0003 0.0002 0.0008 0.0004 0.0006
40 0.0455 0.0590 0.0257 0.0004 0.0002 0.0002 0.0005 0.0003 0.0004

40 35 0.0441 0.0576 0.0265 0.0003 0.0002 0.0002 0.0005 0.0003 0.0004
30 0.0426 0.0562 0.0275 0.0003 0.0002 0.0002 0.0005 0.0003 0.0004

Table 4: Relative mean squared errors for the estimators of the shape parameter λ, R(t) and H(t) when prior is
quasi density with d = 0.4.

n r λ̂ λ̃S λ̃L(c=3) R̂ R̃S R̃L(c=5) Ĥ H̃S H̃L(c=2)

20 20 0.1437 0.2468 0.1352 0.0010 0.0008 0.0004 0.0016 0.0010 0.0015
15 0.1324 0.2322 0.1432 0.0010 0.0007 0.0003 0.0014 0.0009 0.0014
30 0.0734 0.1206 0.0618 0.0006 0.0004 0.0003 0.0008 0.0006 0.0008

30 25 0.0701 0.1163 0.0643 0.0005 0.0004 0.0003 0.0008 0.0005 0.0008
20 0.0664 0.1122 0.0676 0.0005 0.0004 0.0002 0.0008 0.0005 0.0007
40 0.0455 0.0728 0.0342 0.0004 0.0003 0.0002 0.0005 0.0004 0.0005

40 35 0.0441 0.0710 0.0352 0.0003 0.0003 0.0002 0.0005 0.0004 0.0005
30 0.0426 0.0692 0.0364 0.0003 0.0003 0.0002 0.0005 0.0003 0.0005

4.2. Simulation assessment

To compare the performance of the Bayes estimators of λ, R(t) and H(t) under the squared error loss
function and the linex loss function, we simulated the mean squared errors of all proposed estimators
through Monte Carlo simulation method. The prior parameters chosen (α, β) = (6.0, 1.5), that yield
the generated value of λ = 3.54714 as the true value. The true values of R(t) and H(t) at time
t = 0.4 are computed to be R(t = 0.4) = 0.79465 and H(t = 0.4) = 0.22985. Using the true
value of λ, the Type-II censored data from the exponentiated half triangle distribution are generated
for sample size n = 20, 30, 40 and various Type-II censoring schemes. Using this data, the mean
squared errors of the Bayes estimators of λ, R(t) and H(t) under the squared error loss function and
the linex loss function are simulated by the Monte Carlo method based on 10,000 runs for sample size
n = 20, 30, 40 and various choices of censoring under Type-II censored samples. These values under
the gamma prior and the quasi prior are given in Table 3 and Table 4, respectively. The MLEs of λ,
R(t) and H(t) are compared with Bayes estimators under the squared error loss function and the linex
loss function in terms of estimated MSE. The computation of Bayes estimators is more tentative than
MLEs. The Bayes estimators under the linex error loss function (that is asymmetric) show an overall
better performance than their corresponding MLEs and Bayes estimators under the squared error loss
function (that is symmetric); however, Bayes estimators under the squared error loss function provide
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Table 5: Coverage probabilities of the estimators of the shape parameter λ when prior is gamma density with
α = 6.0 and β = 1.5.

n r λ̂ λ̃S λ̃L(c=3)

20 20 (0.0341, 0.9363) (0.0387, 0.9398) (0.0421, 0.9415)
15 (0.0310, 0.9215) (0.0352, 0.9372) (0.0411, 0.9389)
30 (0.0398, 0.9378) (0.0424, 0.9403) (0.0451, 0.9421)

30 25 (0.0387, 0.9324) (0.0398, 0.9372) (0.0425, 0.9418)
20 (0.0345, 0.9312) (0.0375, 0.9332) (0.0420, 0.9412)
40 (0.0436, 0.9413) (0.0487, 0.9476) (0.0498, 0.9487)

40 35 (0.0414, 0.9387) (0.0455, 0.9418) (0.0463, 0.9431)
30 (0.0401, 0.9215) (0.0421, 0.9401) (0.0454, 0.9427)

Table 6: Coverage probabilities of the estimators of the shape parameter λ when prior is quasi density with
d = 0.4.

n r λ̂ λ̃S λ̃L(c=3)

20 20 (0.0305, 0.9225) (0.0327, 0.9309) (0.0373, 0.9332)
15 (0.0287, 0.9198) (0.0310, 0.9293) (0.0352, 0.9301)
30 (0.0358, 0.9298) (0.0401, 0.9325) (0.0432, 0.9389)

30 25 (0.0338, 0.9253) (0.0379, 0.9319) (0.0412, 0.9356)
20 (0.0310, 0.9219) (0.0322, 0.9312) (0.0371, 0.9329)
40 (0.0397, 0.9368) (0.0437, 0.9405) (0.0446, 0.9428)

40 35 (0.0382, 0.9315) (0.0425, 0.9388) (0.0434, 0.9401)
30 (0.0368, 0.9288) (0.0402, 0.9327) (0.0405, 0.9390)

superior results than others for the cumulative failure rate H(t). Table 5 and Table 6 shows that an
(informative) gamma prior provides a better match to the target coverage probabilities’ 0.05 and 0.95
than a (noninformative) quasi prior especially when the sample size is small.

5. Concluding Remarks

In this paper, we present the Bayesian and Non-Bayesian estimator of the shape parameter λ, relia-
bility function R(t) and cumulative failure rate function H(t) of the exponentiated distribution family
with Type-II censoring. Bayes estimators under the squared error loss function and the linex loss
function are derived. The MLE’s are also obtained through the use of a gamma prior and quasi prior.

Appendix

1. The posterior density of λ:

π(λ|x) =
λr exp

(
λ
∑r

i=1 log Ui
)

(1 − Uλ
r )n−rλα−1 exp(−βλ)∫ ∞

0 λr exp
(
λ
∑r

i=1 log Ui
)

(1 − Uλ
r )n−rλα−1 exp(−βλ)dλ

,

where

the denominator =
∫ ∞

0
λr+α−1 exp

λ  r∑
i=1

log Ui − β
 n−r∑

j=0

(−1) j
(
n − r

j

)
U jλ

r dλ

=

n−r∑
j=0

(−1) j
(
n − r

j

) ∫ ∞

0
λr+α−1 exp

−λ β − r∑
i=1

log Ui − j log Ur

 dλ
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=
Γ (r + α)(

β −∑r
i=1 log Ui

)r+α

n−r∑
j=0

(−1) j
(
n − r

j

) (
1 − j log Ur

β −∑r
i=1 log Ui

)−(r+α)

.

Therefore

π(λ|x) =
(β −∑r

i=1 log Ui)r+α

M1Γ(r + α)
λr+α−1e−λ(β−∑r

i=1 log Ui)
(
1 − Uλ

r

)n−r
.

2. Bayes estimator of λ under SELF:

λ̃S =

∫ ∞

0
λ

(
β −∑r

i=1 log Ui
)r+α

M1Γ(r + α)
λr+α−1e−λ(β−∑r

i=1 log Ui)
(
1 − Uλ

r

)n−r
dλ

=

(
β −∑r

i=1 log Ui
)r+α

M1Γ(r + α)

∫ ∞

0
λr+αe−λ(β−∑r

i=1 log Ui)
(
1 − Uλ

r

)n−r
dλ

=

(
β −∑r

i=1 log Ui
)r+α

M1Γ(r + α)
Γ(r + α + 1)

(β −∑r
i=1 log Ui)r+α+1

n−r∑
p=0

(
n − r

p

)
(−1)p

(
1 − p log Ur

β −∑r
i=1 log Ui

)−(r+α+1)

=
r + α

M1(β −∑r
i=1 log Ui)

n−r∑
p=0

(
n − r

p

)
(−1)p

(
1 − p log Ur

β −∑r
i=1 log Ui

)−(r+α+1)

.

3. Bayes estimator of λ under LLF:

λ̃L = −
1
c

log Eπ

[
e−cλ

]
,

where

Eπ[e−cλ] =
∫ ∞

0
e−cλ (β −∑r

i=1 log Ui)r+α

M1Γ(r + α)
λr+α−1e−λ(β−∑r

i=1 log Ui)
(
1 − Uλ

r

)n−r
dλ

=
(β −∑r

i=1 log Ui)r+α

M1Γ(r + α)

∫ ∞

0
λr+α−1e−λ(β+c−∑r

i=1 log Ui)
(
1 − Uλ

r

)n−r
dλ

=
(β −∑r

i=1 log Ui)r+α

M1Γ(r + α)

n−r∑
p=0

(
n − r

p

)
(−1)p Γ(r + α)

β + c −∑r
i=1 log Ui − p log Ur)r+α

=
(β −∑r

i=1 log Ui)r+α

M1Γ(r + α)
Γ(r + α)

(β −∑r
i=1 log Ui)r+α

n−r∑
p=0

(
n − r

p

)
(−1)p

(
1 +

c − p log Ur

β −∑r
i=1 log Ui

)−(r+α)

=
1

M1

n−r∑
p=0

(
n − r

p

)
(−1)p

(
1 +

c − p log Ur

β −∑r
i=1 log Ui

)−(r+α)

.

Therefore,

λ̃L = −
1
c

log
1

M1

n−r∑
p=0

(
n − r

p

)
(−1)p

(
1 +

c − p log Ur

β −∑r
i=1 log Ui

)−(r+α)

=
1
c

log
M1∑n−r

p=0

(
n−r

p

)
(−1)p

(
1 + c−p log Ur

β−∑r
i=1 log Ui

)−(r+α) .
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4. HPD credible interval of λ:∫ u

l
π(λ|x)dλ =

∫ u

l

(β −∑r
i=1 log Ui)r+α

M1Γ(r + α)
λr+α−1e−λ(β−∑r

i=1 log Ui)
(
1 − Uλ

r

)n−r
dλ

=

n−r∑
j=0

(−1) j
(
n − r

j

)
1

M1

(
T

T − j log Ur

)r+α

× 1
Γ(r + α)

∫ (T− j log Ur)u

(T− j log Ur)l
λr+α−1eλdλ

=

n−r∑
j=0

(−1) j
(
n − r

j

)
1

M1

(
T

T − j log Ur

)r+α

× [
ΓI((T − j log Ur)u, r + α) − ΓI((T − j log Ur)l, r + α)

]
.

5. The posterior density of R(t):

Since R = R(t) = 1 − [1 − (1 − t/σ)2]λ,

λ =
log(1 − R)

log
[
1 − (1 − t/σ)2

] and
∣∣∣∣∣dR
dλ

∣∣∣∣∣−1

= − 1
(1 − R) log Ut

.

Therefore,

π(R|x) = π(λ(R)|x)
∣∣∣∣dR
dλ

∣∣∣∣−1

=
(β −∑r

i=1 log Ui)r+α

M1Γ(r + α)
(λ(R))r+α−1 e−λ(R)(β−∑r

i=1 log Ui)
(
1 − Uλ(R)

r

)n−r
(
− 1

(1 − R) log Ut

)

=
(β −∑r

i=1 Ui)r+α

M1Γ(r + α)

(
1

log Ut

)r+α (
log(1 − R)−1

)r+α−1
(

1
1 − R

) β−∑r
i=1 log Ui
log Ut

+1 [
1 − U

log(1−R)
log Ut

r

]n−r

=
T r+α

M1Γ(r + α)

(
1
Vt

)r+α (
log(1 − R)−1

)r+α−1
(

1
1 − R

)1− T
Vt

[
1 − U

log(1−R)−1

Vt
r

]n−r

=
pr+α

M1Γ(r + α)
(G1(R))r+α−1 eG1(R)(1−p)

[
1 − U

G1(R)
Vt

r

]n−r

,

where Vt = log U−1
t , G1(R) = log(1 − R)−1 and p = T/Vt.

6. The posterior density of H(t):

Since H = H(t) = − log R(t),

R = e−H and
∣∣∣∣∣dH
dR

∣∣∣∣∣−1

= R = eH .

Therefore,

π(H|x) = π(R(H)|x)
∣∣∣∣dH
dR

∣∣∣∣−1

=
pr+α

M1Γ(r + α)

(
log(1 − e−H)−1

)r+α−1
e(log(1−e−H )−1)(1−p)

1 − U
log(1−e−H)−1

Vt
r


n−r

eH
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=
pr+α

M1Γ(r + α)
(G2(H))r+α−1

(
1

1 + eH

)1−p [
1 − U

G2(H)
Vt

r

]n−r

eH

=
pr+α

M1Γ(r + α)
(G2(H))r+α−1 eG2(H)p

(
eH

1 + eH

) [
1 − U

G2(H)
Vt

r

]n−r

eH ,

where G2(H) = log(1 − e−H)−1.

7. The rest can be proved in a similar way.

References

Balakrishnan, N. and Nevzorov, V. B. (2003). A Primer on Statistical Distribution, John Willey &
Stone, New York.

Balakrishnan, N. and Puthenpura, S. (1986). Best linear unbiased estimators of location and scale
parameters of the half logistic distribution, Journal of statistical Computation and Simulation,
25, 193–204.

Balakrishnan, N. and Wong, K. H. T. (1991). Approximate MLEs for the location and scale parameters
of the half logistic distribution with Type-II right-censoring, IEEE Transactions on Reliability,
40, 140–145.

Johnson, D. (1997). The triangular distribution as a proxy for the beta distribution in risk analysis,
The Statistician, 46, 387–398.

Kang, S. B., Cho, Y. S. and Han, J. T. (2008). Estimation for the half logistic distribution under
progressive Type-II Censoring, Communications of the Korean Statistical Society, 15, 815–823.

Mann, N. R. and Fertig, K. W. (1973). Tables for obtaining confidence bounds and tolerance bounds
based on best linear invariant estimates of parameters of the extreme value distribution, Techno-
metrics, 15, 87–101.

Varian, H. R. (1975). A Bayesian approach to real estate assessment. In: S. E. Feinberg and A.
Zellner, Eds., Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage,
North Holland, Amsterdam, 195–208.

Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss function, Journal of
American Statistical Association, 81, 446–451.

Received March 2011; Accepted April 2011


