• Title/Summary/Keyword: bandgap reference circuit

Search Result 36, Processing Time 0.034 seconds

적외선 검출기를 위한 액체 질소 온도 동작 밴드갭 기준회로의 설계

  • Kim, Youn-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.251-256
    • /
    • 2004
  • A stable reference voltage generator is necessary to the infrared image signal readout circuit(ROIC) to improve noise characteristics in comparison with signals originated from infrared devices, that is, to gain good images. In this study, bandgap reference circuit operating at cryogenic temperature of 77K for Infrared image ROIC(readout integrated circuit) was propose. Most of bandgap reference circuits which are presented so far operate at room temperature, and they are not suitable for infrared image ROIC operating at liquid nitrogen temperature, 77K. To design bandgap reference circuit operating at cryogenic temperature, the parameter characteristics of used devices as temperature change are seen, and then bandgap reference circuit is proposed with considering such characteristics. It demonstrates practical use possibility through taking measurements and estimations.

  • PDF

Bandgap Voltage Reference Circuit Design Technology Suitable for Driving Large OLED Display Panel (대형 OLED 디스플레이 패널 구동에 적합한 밴드갭 레퍼런스 회로 설계 및 결과)

  • Moon, Jong Il;Cho, Sang Jun;Cho, Eou Sik;Nam, Chul;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.53-56
    • /
    • 2018
  • In this paper, a CMOS bandgap voltage reference that is not sensitive to changes in the external environment is presented. Large OLED display panels need high supply voltage. MOSFET devices with high voltage are sensitive to the output voltage due to the channel length modulation effect. The self-cascode circuit was applied to the bandgap reference circuit. Simulation results show that the maximum output voltage change of the basic circuit is 77mV when the supply voltage is changed from 10.5V to 13.5V, but the proposed circuit change is improved to 0.0422mV. The improved circuit has a low temperature coefficient of $9.1ppm/^{\circ}C$ when changing the temperature from $-40^{\circ}C$ to $140^{\circ}C$. Therefore, the proposed circuit can be used as a reference voltage source for circuits that require a high supply voltage.

Design of Variable Gain Low Noise Amplifier Using PTAT Bandgap Reference Circuit (PTAT 밴드갭 온도보상회로를 적용한 가변 이득 저잡음 증폭기 설계)

  • Choi, Hyuk-Jae;Go, Jae-Hyeong;Kim, Koon-Tae;Lee, Je-Kwang;Kim, Hyeong-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.9 no.4
    • /
    • pp.141-146
    • /
    • 2010
  • In this paper, bandgap reference PTAT(Proportional to Absolute Temperature) circuit and flexible gain control of LNA(Low Noise Amplifier) which is usable in Zigbee system of 2.4GHz band are designed by TSMC $0.18{\mu}m$ CMOS library. PTAT bandgap reference circuit is proposed to minimize the instability of CMOS circuit which may be unstable in temperature changes. This circuit is designed such that output voltage remains within 1.3V even when the temperature varies from $-40^{\circ}C$ to $-50^{\circ}C$ when applied to the gate bias voltage of LNA. In addition, the LNA is designed to be operated on 2.4GHz which is applicable to Zigbee system and able to select gains by changing output impedance using 4 NMOS operated switches. The simulation result shows that achieved gain is 14.3~17.6dB and NF (Noise Figure) 1.008~1.032dB.

  • PDF

Accurate Sub-1 V CMOS Bandgap Voltage Reference with PSRR of -118 dB

  • Abbasizadeh, Hamed;Cho, Sung-Hun;Yoo, Sang-Sun;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.528-533
    • /
    • 2016
  • A low voltage high PSRR CMOS Bandgap circuit capable of generating a stable voltage of less than 1 V (0.8 V and 0.5 V) robust to Process, Voltage and Temperature (PVT) variations is proposed. The high PSRR of the circuit is guaranteed by a low-voltage current mode regulator at the central aspect of the bandgap circuitry, which isolates the bandgap voltage from power supply variations and noise. The isolating current mirrors create an internal regulated voltage $V_{reg}$ for the BG core and Op-Amp rather than the VDD. These current mirrors reduce the impact of supply voltage variations. The proposed circuit is implemented in a $0.35{\mu}m$ CMOS technology. The BGR circuit occupies $0.024mm^2$ of the die area and consumes $200{\mu}W$ from a 5 V supply voltage at room temperature. Experimental results demonstrate that the PSRR of the voltage reference achieved -118 dB at frequencies up to 1 kHz and -55 dB at 1 MHz without additional circuits for the curvature compensation. A temperature coefficient of $60 ppm/^{\circ}C$ is obtained in the range of -40 to $120^{\circ}C$.

Temperature Stable Current Source Using Simple Self-Bias Circuit

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.215-218
    • /
    • 2009
  • In this paper, temperature stable current and voltage references using simple CMOS bias circuit are proposed. To obtain temperature stable characteristics of bias circuit a bandgap reference concept is used in a conventional circuit. The parasitic bipolar transistors or MOS transistors having different threshold voltage are required in a bandgap reference. Thereby the chip area increase or the extra CMOS process is required compared to a standard CMOS process. The proposed reference circuit can be integrated on a single chip by a standard CMOS process without the extra CMOS process. From the simulation results, the reference current variation is less than ${\pm}$0.44% over a temperature range from - $20^{\circ}C$ to $80^{\circ}C$. And the voltage variation is from - 0.02% to 0.1%.

Operating Conditions Proposal of Bandgap Circuit at Cryogenic Temperature for Signal Processing of Infrared Detector and a Performance Analysis of a Manufactured Chip (적외선 탐색기 신호처리를 위한 극저온 밴드갭 회로 동작 조건 제안 및 제작된 칩의 성능 분석)

  • Kim Yon Kyu;Kang Sang-Gu;Lee Hee-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.59-65
    • /
    • 2004
  • A stable reference voltage generator is necessary to the infrared image signal readout circuit(ROIC) to improve noise characteristics of signal originated from infrared devices, that is, to gain good images. In this paper, bandgap circuit operating at cryogenic temperature of 77K for Infrared image ROIC(readout integrated circuit) was first made. It demonstrates practical use possibility through taking measurements and estimations. Bandgap circuit is a representative voltage reference circuit. Most of bandgap reference circuits which are presented so far operate at room temperature, and their characteristic are not suitable for infrared image ROIC operating at liquid nitrogen temperature, 77K. To design bandgap circuit operating at cryogenic temperature, suitable circuit is selected and the parameter characteristics of used devices as temperature change are seen by a theoretical study and fitted at liquid temperature with considering such characteristics. This circuit has been fabricated in the Hynix 0.6um standard CMOS process, and the output voltage measured shows that the stability is 1.042±0.0015V over the temperature range of 60K to 110K and is better than bandgap circuits operated at room temperature.

Design of an Embedded RC Oscillator With the Temperature Compensation Circuit (온도 보상기능을 갖는 내장형RC OSCILLATOR 설계)

  • 김성식;조경록
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.42-50
    • /
    • 2003
  • This paper presents an embedded RC oscillator which has temperature compensation circuits. The conventional RC oscillator has frequency deviation about 15%, which is caused by variation of resistors and the reference voltage of schmitt trigger from the temperature condition. In this paper, the proposed circuit use a CMOS bandgap reference having balanced current temperature coefficients as a triggering voltage of schmitt trigger. The constant current sources consist of current mirror circuit with the positive and negative temperature coefficient. The proposed circuit shows less 3% frequency deviation for variation of temperature, supply voltage and process parameters.

A Design of CMOS Subbandgap Reference using Pseudo-Resistors (가상저항을 이용한 CMOS Subbandgap 기준전압회로 설계)

  • Lee, Sang-Ju;Lim, Shin-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.609-611
    • /
    • 2006
  • This paper describes a CMOS sub-bandgap reference using Pseudo-Resistors which can be widely used in flash memory, DRAM, ADC and Power management circuits. Bandgap reference circuit operates weak inversion for reducing power consumption and uses Pseudo-Resistors for reducing the chip area, instead of big resistor. It is implemented in 0.35um Standard 1P4M CMOS process. The temperature coefficient is 5ppm/$^{\circ}C$ from $40^{\circ}C$ to $100^{\circ}C$ and minimum power supply voltage is 1.2V The core area is 1177um${\times}$617um. Total current is below 2.8uA and output voltage is 0.598V at $27^{\circ}C$.

  • PDF

A New Curvature-Compensated CMOS Bandgap Reference with Low Power Consumption

  • Gil, JoonHo;Je, Minkyu;Cho, YoungHo;Shin, Hyungcheol
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.612-614
    • /
    • 2000
  • We propose a new curvature-compensated CMOS bandgap reference circuit that is achieved by varying a current ratio. The proposed circuit is shown to have small temperature coefficient that the output voltage variation is 0.4mV.

  • PDF

Start-up circuit with wide supply swing voltage range and modified power-up characteristic for bandgap reference voltage generator. (넓은 전압 범위와 개선된 파워-업 특성을 가지는 밴드갭 기준전압 발생기의 스타트-업 회로)

  • Sung, Kwang-Young;Kim, Jong-Hee;Kim, Tae-Ho;Vu, Cao Tuan;Lee, Jae-Hyung;Lim, Gyu-Ho;Park, Mu-Hum;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1544-1551
    • /
    • 2007
  • A start-up circuit of the bandgap reference voltage generator of cascode current mirror type with wide operating voltage range and enhanced power-up characteristics is proposed in the paper. It is confirmed by simulation that the newly proposed start-up circuit does not affect the operation of the bandgap reference voltage generatory even though the supply voltage(VDDA) is higher and has more stable power-up characteristic than the conventional start-up circuit. Test chips are designed and fabricated with $0.18{\mu}m$ tripple well CMOS process and their test has been completed. The mean value of measured the reference voltage(Vref) is 738mV and The three sigma value($3{\sigma}$) is 29.88mV.