온도 보상기능을 갖는 내장형RC OSCILLATOR 설계

Design of an Embedded RC Oscillator With the Temperature Compensation Circuit

  • 발행 : 2003.04.01

초록

본 논문에서는 시스템의 클럭을 안정적으로 공급하는 집적화 한 내장형 RC oscillator의 구현에 관한 논문이다. 기존의 RC oscillator는 온도에 따라 주파수변화가 약 15%정도 변화가 있는데 이는 온도에 따른 저항값의 변화와 schmit trigger의 기준전압이 온도에 따라 변화하기 때문이다. 본 연구에서는 온도에 따른 주파수 변화를 최소화하는 방법으로 CMOS bandgap과 온도에 따른 전류의 변화를 이용하였다. CMOS bandgap으로 기준 전압을 얻고 온도에 따라 증가하는 전류원과 온도에 따라 감소 하는 전류원을 서로 합하면 온도에 따라 일정한 전류를 얻어 주파수의 변화를 약 3%이내로 유지하는 회로를 제안한다.

This paper presents an embedded RC oscillator which has temperature compensation circuits. The conventional RC oscillator has frequency deviation about 15%, which is caused by variation of resistors and the reference voltage of schmitt trigger from the temperature condition. In this paper, the proposed circuit use a CMOS bandgap reference having balanced current temperature coefficients as a triggering voltage of schmitt trigger. The constant current sources consist of current mirror circuit with the positive and negative temperature coefficient. The proposed circuit shows less 3% frequency deviation for variation of temperature, supply voltage and process parameters.

키워드

참고문헌

  1. P. Yannis, 'Accurate analysis of temperature effects in Ic - Vbe Characteristics with application to bandbap reference sources', IEEE J. Solid State circuits, Vol. 6, pp. 1076-1083, Dec 1980
  2. P.E. Allen and D.R. Holbrg, 'CMOS Analog Circuit Design', HRW, 1987
  3. W. T. Harrison, 'An improved current mode CMOS voltage reference', ISCAS 2001, Vol. 1, pp. 23-26, 2001 https://doi.org/10.1109/SSMSD.2001.914931
  4. N. Weste and K. Eshraghian, 'Principles of CMOS VLSI Design', Addison-Wesley,1988
  5. B. kim, 'Low power CMOS on chip voltage reference using MOS PTAT', ASIC conference and exhibit, 1997 https://doi.org/10.1109/ASIC.1997.617029
  6. H. Banba, H. Shiga, A. Umezawa, T. Miyabata, T. Tanzawa, S. Atsumi and K. Sakuii, 'A CMOS Bandbap Reference Circuit with Sub IV Operation', VLSI '98 Digest of Technical Papers, Honolulu, USA, pp. 228-229, 1998
  7. P.R. Gray and R.G. Meyer, 'Analysis and Design of analog integrated circuits', 2nd ed, 1984
  8. P.R. Gray and R.G. Meyer, 'MOS operational amplifier design- A tutorial overview,' IEEE J. Solid-State Circuits, Vol. SC-17, pp. 969-982, Dec. 1982
  9. Meijer,G.C.M, 'Temperature sensors and voltage references implemented in CMOS technology', IEEE. J.sensor, pp. 225-234,Oct 2001 https://doi.org/10.1109/JSEN.2001.954835
  10. M. Gunawan, G.Mejier, J.Fonderie and H. Huijsing, 'A Curvature Corrected Low Voltage Bandgap Reference', IEEE J Solid Circuits, Vol. 28, pp. 667-670, June 1993 https://doi.org/10.1109/4.217981
  11. S. LIn and C. Salama, 'A Vbe Model with Application to Bandgap Reference Design', IEEE. J. Solid State Circuits, Vol. 20, pp. 1283-1285, Dec. 1985 https://doi.org/10.1109/JSSC.1985.1052470
  12. J. Cheng and G. Chan, 'A CMOS bandgap reference circuit', ASIC, 2001. 4th international conference, pp. 271-273, 2001
  13. B. Song and P.R. Gray, 'A precision curvature-compensated CMOS bandgap reference, IEEE J. Solid-State Circuits, Vol. SC-18, pp. 634-643, Dec. 1983
  14. Filanovsky, 'Mutual compensation of mobility and threshold voltage temperature effect with applications in COMS circuit', IEEE transactions circuit and system, pp. 876-884, July 2001 https://doi.org/10.1109/81.933328
  15. H. Qiuting and P. Basedau, 'A 200uA, 78MHz CMOS crystal digitally trimmable to 0.3ppm,' in Proc. 1996 Int. Symp. Low Power Electronics and Design, Monterey, CA, Aug. 1996, pp. 305-308
  16. Proc. 1996 Int. Symp. Low Power Electronics and Design A 200uA, 78MHz CMOS crystal digitally trimmable to 0.3ppm H.Qiuting;P.Basedau