• Title/Summary/Keyword: band gap engineering

Search Result 727, Processing Time 0.033 seconds

Degradation and Stability of Organic-Inorganic Perovskite Solar Cells (유 무기 페로브스카이트 태양전지의 열화와 안정성)

  • Cho, Kyungjin;Kim, Seongtak;Bae, Soohyun;Chung, Taewon;Lee, Sang-won;Lee, Kyung Dong;Lee, Seunghun;Kwon, Guhan;Ahn, Seh-Won;Lee, Heon-Min;Ko, Min Jae;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.68-79
    • /
    • 2016
  • The power conversion efficiency of perovskite solar cells has remarkably increased from 3.81% to 22.1% in the past 6 years. Perovskite solar cells, which are based on the perovskite crystal structure, are fabricated using organic-inorganic hybrid materials. The advantages of these solar cells are their low cost and simple fabrication procedure. Also, they have a band gap of about 1.6 eV and effectively absorb light in the visible region. For the commercialization of perovskite solar cells in the field of photovoltaics, the issue of their long term stability cannot be overlooked. Although the development of perovskite solar cells is unprecedented, their main drawback is the degradation of the perovskite structure by moisture. This degradation is accelerated by exposure to UV light, temperature, and external bias. This paper reviews the aforesaid reasons for perovskite solar cell degradation. We also discuss the research directions that can lead to the development of perovskite solar cells with high stability.

A Study on the Structural and Optical Properties of Sputtered CdTe Thin Films Deposited on Flexible Substrates for Solar Cell Application (태양전지 응용을 위한 플렉시블 기판 위에 스퍼터 증착된 CdTe 박막의 구조적, 광학적 특성 연구)

  • Seo, Mun-Su;Jeong, Hak-Gi;Lee, Jae-Hyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.734-736
    • /
    • 2012
  • Cadmium telluride (CdTe) films have been prepared on Corning 7059 glass, molybdenum (Mo), and polyimide (PI) substrates by r.f. magnetron sputtering technique. The influence of the sputter pressure on the structural and optical properties of these films was evaluated. In addition, a comparison of the properties of the films deposited on fferent substrates was performed.

  • PDF

Effect of Hydrogen Treatment on Anatase TiO2 Nanotube Arrays for Photoelectrochemical Water Splitting

  • Kim, Hyun Sik;Kang, Soon Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2067-2072
    • /
    • 2013
  • Hydrogen ($H_2$) treatment using a two-step $TiO_2$ nanotube (TONT) film was performed under various annealing temperatures from $350^{\circ}C$ to $550^{\circ}C$ and significantly influenced the extent of hydrogen treatment in the film. Compared with pure TONT films, the hydrogen-treated TONT (H:TONT) film showed substantial improvement of material features from structural, optical and electronic aspects. In particular, the extent of enhancement was remarkable with increasing annealing temperature. Light absorption by the H:TONT film extended toward the visible region, which was attributable to the formation of sub-band-gap states between the conduction and valence bands, resulting from oxygen vacancies due to the $H_2$ treatment. This increased donor concentration about 1.5 times higher and improved electrical conductivity of the TONT films. Based on these analyses and results, photoelectrochemical (PEC) performance was evaluated and showed that the H:TONT film prepared at $550^{\circ}C$ exhibited optimal PEC performance. Approximately twice higher photocurrent density of 0.967 $mA/cm^2$ at 0.32 V vs. NHE was achieved for the H:TONT film ($550^{\circ}C$) versus 0.43 $mA/cm^2$ for the pure TONT film. Moreover, the solar-to-hydrogen efficiency (STH, ${\eta}$) of the H:TONT film was 0.95%, whereas a 0.52% STH efficiency was acquired for the TONT film. These results demonstrate that hydrogen treatment of TONT film is a simple and effective tool to enhance PEC performance with modifying the properties of the original material.

Photoelectrochemical Cell Study on Closely Arranged Vertical Nanorod Bundles of CdSe and Zn doped CdSe Films

  • Soundararajan, D.;Yoon, J.K.;Kwon, J.S.;Kim, Y.I.;Kim, S.H.;Park, J.H.;Kim, Y.J.;Park, D.Y.;Kim, B.C.;Wallac, G.G.;Ko, J.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2185-2189
    • /
    • 2010
  • Closely arranged CdSe and Zn doped CdSe vertical nanorod bundles were grown directly on FTO coated glass by using electrodeposition method. Structural analysis by XRD showed the hexagonal phase without any precipitates related to Zn. FE-SEM image showed end capped vertically aligned nanorods arranged closely. From the UV-vis transmittance spectra, band gap energy was found to vary between 1.94 and 1.98 eV due to the incorporation of Zn. Solar cell parameters were obtained by assembling photoelectrochemical cells using CdSe and CdSe:Zn photoanodes, Pt cathode and polysulfide (1M $Na_2S$ + 1M S + 1M NaOH) electrolyte. The efficiency was found to increase from 0.16 to 0.22 upon Zn doping. Electrochemical impedance spectra (EIS) indicate that the charge-transfer resistance on the FTO/CdSe/polysulfide interface was greater than on FTO/CdSe:Zn/polysulfide. Cyclic voltammetry results also indicate that the FTO/CdSe:Zn/polysulfide showed higher activity towards polysulfide redox reaction than that of FTO/CdSe/polysulfide.

Point defect for $AgGaSe_2$ epilayers grown by hot wall epitaxy (Hot Wall Epitaxy (HWE)법에 의해 성장된 $AgGaSe_2$ 에피레이어의 점결함 연구)

  • Hong, Myung-Seok;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.98-99
    • /
    • 2008
  • To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $420^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) 1.9501 eV - ($8.79\times10^{-4}$ eV/K)$T^2$/(T + 250 K). After the as-grown $AgGaSe_2$ single crystal thin films was annealed in Ag-, Se-, and Ga-atmospheres, the origin of point defects of $AgGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10K. The native defects of $V_{Ag}$, $V_{Se}$, $Ag_{int}$, and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaSe_2$ single crystal thin films to an optical p-type. Also, we confirmed that Ga in $AgGaSe_2$/GaAs did not form the native defects because Ga in $AgGaSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

A Monochromatic X-Ray CT Using a CdTe Array Detector with Variable Spatial Resolution

  • Tokumori, Kenji;Toyofuku, Fukai;Kanda, Shigenobu;Ohki, Masafumi;Higashida, Yoshiharu;Hyodo, Kazuyuki;Ando, Masami;Uyama, Chikao
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.411-414
    • /
    • 2002
  • The CdTe semiconductor detector has a higher detection efficiency for x-rays and $\square$amma rays and a wider energy band gap compared with Si and Ge semiconductor detectors. Therefore, the size of the detector element can be made small, and can be operated at room temperature. The interaction between a CdTe detector and incident x-rays is mainly photoelectric absorption in the photon energy range of up to 100 keV. In this energy range, Compton effects are almost negligible. We have developed a 256 channel CdTe array detector system for monochromatic x-ray CT using synchrotron radiation. The CdTe array detector system, the element size of which is 1.98 mm (h) x 1.98 mm (w) x 0.5 mm (t), was operated in photon counting mode. In order to improve the spatial resolution, we tilted the CdTe array detector against the incident parallel monochromatic x-ray beam. The experiments were performed at the BL20B2 experimental hutch in SPring-8. The energy of incident monochromatic x-rays was set at 55 keV. Phantom measurements were performed at the detector angle of 0, 30 and 45 degrees against the incident parallel monochromatic x-rays. The linear attenuation coefficients were calculated from the reconstructed CT images. By increasing the detector angle, the spatial resolutions were improved. There was no significant difference between the linear attenuation coefficients which were corrected by the detector angle. It was found that this method was useful for improving the spatial resolution in a parallel monochromatic x-ray CT system.

  • PDF

Low-area Dual mode DC-DC Buck Converter with IC Protection Circuit (IC 보호회로를 갖는 저면적 Dual mode DC-DC Buck Converter)

  • Lee, Joo-Young
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.586-592
    • /
    • 2014
  • In this paper, high efficiency power management IC(PMIC) with DT-CMOS(Dynamic threshold voltage Complementary MOSFET) switching device is presented. PMIC is controlled PWM control method in order to have high power efficiency at high current level. The DT-CMOS switch with low on-resistance is designed to decrease conduction loss. The control parts in Buck converter, that is, PWM control circuit consist of a saw-tooth generator, a band-gap reference(BGR) circuit, an error amplifier, comparator circuit, compensation circuit, and control block. The saw-tooth generator is made to have 1.2MHz oscillation frequency and full range of output swing from supply voltage(3.3V) to ground. The comparator is designed with two stage OP amplifier. And the error amplifier has 70dB DC gain and $64^{\circ}$ phase margin. DC-DC converter, based on current mode PWM control circuits and low on-resistance switching device, achieved the high efficiency nearly 96% at 100mA output current. And Buck converter is designed along LDO in standby mode which fewer than 1mA for high efficiency. Also, this paper proposes two protection circuit in order to ensure the reliability.

Influence of Cu Doping and Heat Treatments on the Physical Properties of ZnTe Films (Cu 도핑과 열처리가 ZnTe 박막의 물성에 미치는 영향)

  • Choe, Dong-Il;Yun, Se-Wang;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.173-180
    • /
    • 1999
  • Thermally evaporated ZnTe films were investigated as a back contact material for CdS/CdTe solar cells. Two deposition methods, coevaporation and double-layer methods, were used for Cu doping in ZnTe films. ZnTe layers (0.2$\mu\textrm{m}$ thick) were deposited either on glass or on CdS/CdTe substrates without intentional heating of the substrates. Post-deposition annealing was performed at 200,300 and $400^{\circ}C$ for 3,6 and 9 minutes, respectively. Band gap of 2.2eV was measured for both undoped and doped films and a slight change in the shape of absorption spectra was observed in Cu-doped samples after annealing at $400^{\circ}C$. The resistivity of as-deposited ZnTe decreased from 10\ulcorner~10\ulcornerΩcm down to 10\ulcornerΩcm as Cu concentration increased from 0 to 14 at.%. There was not a noticeable change in less of annealing temperature up to $300^{\circ}C$ whereas films annealed at $400^{\circ}C$ revealed hexagonal (101) orientations as well. Some of Cu-doped ZnTe revealed x-ray diffraction (XRD) peaks related with Cu\ulcornerTe(x=1.75~2). Grain growth was observed from about 20nm in as-deposited films to 50nm after annealing at $400^{\circ}C$ by scanning electron microscopy (SEM). Cu distribution in ZnTe films was not uniform according to Auger electron spectroscopy (AES) measurements.

  • PDF

Characteristics of the Mg and In co-doped ZnO Thin Films with Various Substrate Temperatures (RF 마그네트론 스퍼터를 이용하여 제작한 MIZO 박막의 특성에 미치는 기판 온도의 영향)

  • Jeon, Kiseok;Jee, Hongsub;Lim, Sangwoo;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.150-154
    • /
    • 2016
  • Mg and In co-doped ZnO (MIZO) thin films with transparent conducting characteristics were successfully prepared on glass substrates by RF magnetron sputtering technique. The Influence of different substrate temperature (from RT to $400^{\circ}C$) on the structural, morphological, electrical, and optical properties of MIZO thin films were investigated. The MIZO thin film prepared at the substrate temperature of $350^{\circ}C$ showed the best electrical characteristics in terms of the carrier concentration ($4.24{\times}10^{20}cm^{-3}$), charge carrier mobility ($5.01cm^2V^{-1}S^{-1}$), and a minimum resistivity ($1.24{\times}10^{-4}{\Omega}{\cdot}cm$). The average transmission of MIZO thin films in the visible range was over 80% and the absorption edges of MIZO thin films were very sharp. The bandgap energy of MIZO thin films becomes wider from 3.44 eV to 3.6 eV as the substrate temperature increased from RT to $350^{\circ}C$. However, Band gap energy of MIZO thin film was narrow at substrate temperature of $400^{\circ}C$.

Optical Characteristics of CdSe/ZnS Quantum Dot with Precursor Flow Rate Synthesized by using Microreactor (마이크로리액터를 이용한 전구체 유속에 따른 CdSe/ZnS 양자점의 광학특성)

  • Park, Ji Young;Jeong, Da-Woon;Ju, Won;Seo, Han Wook;Cho, Yong-Ho;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.91-94
    • /
    • 2016
  • High-quality colloidal CdSe/ZnS (core/shell) is synthesized using a continuous microreactor. The particle size of the synthesized quantum dots (QDs) is a function of the precursor flow rate; as the precursor flow rate increases, the size of the QDs decreases and the band gap energy increases. The photoluminescence properties are found to depend strongly on the flow rate of the CdSe precursor owing to the change in the core size. In addition, a gradual shift in the maximum luminescent wave (${\lambda}_{max}$) to shorter wavelengths (blue shift) is found owing to the decrease in the QD size in accordance with the quantum confinement effect. The ZnS shell decreases the surface defect concentration of CdSe. It also lowers the thermal energy dissipation by increasing the concentration of recombination. Thus, a relatively high emission and quantum yield occur because of an increase in the optical energy emitted at equal concentration. In addition, the maximum quantum yield is derived for process conditions of 0.35 ml/min and is related to the optimum thickness of the shell material.