Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.2.91

Optical Characteristics of CdSe/ZnS Quantum Dot with Precursor Flow Rate Synthesized by using Microreactor  

Park, Ji Young (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
Jeong, Da-Woon (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
Ju, Won (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
Seo, Han Wook (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
Cho, Yong-Ho (Department of Fusion Chemical Engineering, Hanyang University)
Kim, Bum Sung (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
Publication Information
Journal of Powder Materials / v.23, no.2, 2016 , pp. 91-94 More about this Journal
Abstract
High-quality colloidal CdSe/ZnS (core/shell) is synthesized using a continuous microreactor. The particle size of the synthesized quantum dots (QDs) is a function of the precursor flow rate; as the precursor flow rate increases, the size of the QDs decreases and the band gap energy increases. The photoluminescence properties are found to depend strongly on the flow rate of the CdSe precursor owing to the change in the core size. In addition, a gradual shift in the maximum luminescent wave (${\lambda}_{max}$) to shorter wavelengths (blue shift) is found owing to the decrease in the QD size in accordance with the quantum confinement effect. The ZnS shell decreases the surface defect concentration of CdSe. It also lowers the thermal energy dissipation by increasing the concentration of recombination. Thus, a relatively high emission and quantum yield occur because of an increase in the optical energy emitted at equal concentration. In addition, the maximum quantum yield is derived for process conditions of 0.35 ml/min and is related to the optimum thickness of the shell material.
Keywords
Quantum Dots; Core/Shell; Micro-Reactor; Passivation; Photoluminescence;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 V. L. Colvin, M. C. Schlamp and A. P. Alivisatos: Nature, 370 (1994) 354.   DOI
2 M. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos: Science, 281 (1998) 2013.   DOI
3 S. K. Poznyak, D. V. Talapin, E. V. Shevchenko and H. Weller: Nano Lett., 4 (2004) 693.   DOI
4 M. G. Bawendi, M. L. Steigerwald and L. E. Brus: Annu. Rev. Phys. Chem., 41 (1990) 477.   DOI
5 J. Qiu, J. M. Depuydt, H. Cheng and M. A. Haase: Appl. Phys. Lett., 59 (1991) 2992.   DOI
6 M. Kumar, M. K. Sharan and M. Sharon: Thin Solid Films, 312 (1998) 139.   DOI
7 B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi: J. Phys. Chem. B, 101 (1997) 9463.   DOI
8 N. S. A. Eom, T. S. Kim, Y. H. Choa and B. S. Kim: Kor. J. Mater. Res., 22 (2012) 140 (Korean).   DOI
9 N. S. A. Eom, T.-S. Kim, Y.-H. Choa and B. S. Kim: J. Korean Powder Metall. Inst., 19 (2012) 442 (Korean).   DOI
10 D.-W. Jeong, B. Swain, C. J. Lee, T.-Y. Seong, K.-T. Park and B. S. Kim: Int. J. Appl. Ceram. Technol., 13 (2015) 223.
11 Y.-T. Kwon, N. S. A. Nu, Y.-M. Choi, B.-S. Kim, T.-S. Kim, C.-G. Lee, K.-J. Lee and Y.-H. Choa: J. Nanosci. Nanotechnol., 14 (2014) 7636.   DOI