Browse > Article
http://dx.doi.org/10.21218/CPR.2016.4.2.068

Degradation and Stability of Organic-Inorganic Perovskite Solar Cells  

Cho, Kyungjin (Department of Materials Science and Engineering, Korea University)
Kim, Seongtak (Department of Materials Science and Engineering, Korea University)
Bae, Soohyun (Department of Materials Science and Engineering, Korea University)
Chung, Taewon (Department of Materials Science and Engineering, Korea University)
Lee, Sang-won (Department of Materials Science and Engineering, Korea University)
Lee, Kyung Dong (Department of Materials Science and Engineering, Korea University)
Lee, Seunghun (Department of Materials Science and Engineering, Korea University)
Kwon, Guhan (Energy & Environment Materials & Devices Team, Materials & Devices Advanced Research Institute, LG Electronics)
Ahn, Seh-Won (Energy & Environment Materials & Devices Team, Materials & Devices Advanced Research Institute, LG Electronics)
Lee, Heon-Min (Energy & Environment Materials & Devices Team, Materials & Devices Advanced Research Institute, LG Electronics)
Ko, Min Jae (KU.KIST Green School, Graduate School of Energy and Environment, Korea University)
Kang, Yoonmook (KU.KIST Green School, Graduate School of Energy and Environment, Korea University)
Lee, Hae-seok (Department of Materials Science and Engineering, Korea University)
Kim, Donghwan (Department of Materials Science and Engineering, Korea University)
Publication Information
Current Photovoltaic Research / v.4, no.2, 2016 , pp. 68-79 More about this Journal
Abstract
The power conversion efficiency of perovskite solar cells has remarkably increased from 3.81% to 22.1% in the past 6 years. Perovskite solar cells, which are based on the perovskite crystal structure, are fabricated using organic-inorganic hybrid materials. The advantages of these solar cells are their low cost and simple fabrication procedure. Also, they have a band gap of about 1.6 eV and effectively absorb light in the visible region. For the commercialization of perovskite solar cells in the field of photovoltaics, the issue of their long term stability cannot be overlooked. Although the development of perovskite solar cells is unprecedented, their main drawback is the degradation of the perovskite structure by moisture. This degradation is accelerated by exposure to UV light, temperature, and external bias. This paper reviews the aforesaid reasons for perovskite solar cell degradation. We also discuss the research directions that can lead to the development of perovskite solar cells with high stability.
Keywords
Perovskite solar cell; Stability; Degradation; Moisture; UV light; Temperature; Voltage;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hwang, I., Jeong, I., Lee, J., Ko, M. J., & Yong, K. (2015). Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS applied materials & interfaces, 7(31):17330-17336.   DOI
2 Chen, Q., De Marco, N., Yang, Y. M., Song, T. B., Chen, C. C., Zhao, H., ... & Yang, Y. (2015). Under the spotlight: The organic- inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 10(3):355-396.   DOI
3 Frost, J. M., Butler, K. T., Brivio, F., Hendon, C. H., Van Schilfgaarde, M., & Walsh, A. (2014). Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano letters, 14(5):2584-2590.   DOI
4 Niu, G., Li, W., Meng, F., Wang, L., Dong, H., & Qiu, Y. (2014). Study on the stability of $CH_3NH_3PbI_3$ films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials Chemistry A, 2(3):705-710.   DOI
5 Leijtens, T., Eperon, G. E., Pathak, S., Abate, A., Lee, M. M., & Snaith, H. J. (2013). Overcoming ultraviolet light instability of sensitized $TiO_2$ with meso-superstructured organometal tri-halide perovskite solar cells. Nature communications, 4.
6 Ito, S., Tanaka, S., Manabe, K., & Nishino, H. (2014). Effects of surface blocking layer of $Sb_2S_3$ on nanocrystalline $TiO_2$ for $CH_3NH_3PbI_3$ perovskite solar cells. The Journal of Physical Chemistry C, 118(30):16995-17000.   DOI
7 Guo, X. D., Dong, H. P., Li, W. Z., Li, N. & Wang, L. D. "Multifunctional MgO Layer in Perovskite Solar Cells." Chemphyschem 16, 1727-1732, (2015).   DOI
8 http://www.iec.ch/
9 Han, Yu, et al. "Degradation observations of encapsulated planar $CH_3NH_3PbI_3$ perovskite solar cells at high temperatures and humidity." Journal of Materials Chemistry A 3.15 (2015):8139-8147.   DOI
10 Conings, B., Drijkoningen, J., Gauquelin, N., Babayigit, A., D'Haen, J., D'Olieslaeger, L., ... & Angelis, F. D. (2015). Intrinsic thermal instability of methylammonium lead trihalide perovskite. Advanced Energy Materials, 5(15).
11 Deretzis, I., Alberti, A., Pellegrino, G., Smecca, E., Giannazzo, F., Sakai, N., ... & La Magna, A. (2015). Atomistic origins of $CH_3NH_3PbI_3$ degradation to $PbI_2$ in vacuum. Applied Physics Letters, 106(13):131904.   DOI
12 Zhang, Y. Y., Chen, S., Xu, P., Xiang, H., Gong, X. G., Walsh, A., & Wei, S. H. (2015). Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor $CH_3NH_3PbI_3$. arXiv preprint arXiv:1506.01301.
13 Ganose, A. M., Savory, C. N., & Scanlon, D. O. (2015). $(CH_3NH_3)_2Pb(SCN)_2I_2$: A More Stable Structural Motif for Hybrid Halide Photovoltaics?. The journal of physical chemistry letters, 6(22):4594-4598.   DOI
14 Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., & Snaith, H. J. (2014). Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano letters, 14(10):5561-5568.   DOI
15 Liu, J., Pathak, S., Stergiopoulos, T., Leijtens, T., Wojciechowski, K., Schumann, S., ... & Snaith, H. J. (2015). Employing PEDOT as the p-Type Charge Collection Layer in Regular Organic-Inorganic Perovskite Solar Cells. The journal of physical chemistry letters, 6(9):1666-1673.   DOI
16 Malinauskas, T., Tomkute-Luksiene, D., Sens, R., Daskeviciene, M., Send, R., Wonneberger, H., ... & Getautis, V. (2015). Enhancing thermal stability and lifetime of solid-state dye-sensitized solar cells via molecular engineering of the hole-transporting material spiro-OMeTAD. ACS applied materials & interfaces, 7(21):11107-11116   DOI
17 Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., & Snaith, H. J. (2014). Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 7(3):982-988.   DOI
18 Li, X., Dar, M. I., Yi, C., Luo, J., Tschumi, M., Zakeeruddin, S. M., ... & Gratzel, M. (2015). Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ${\omega}$-ammonium chlorides. Nature chemistry.
19 Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., & Snaith, H. J. (2014). Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano letters, 14(10):5561-5568.   DOI
20 Li, M. H., Hsu, C. W., Shen, P. S., Cheng, H. M., Chi, Y., Chen, P., & Guo, T. F. (2015). Novel spiro-based hole transporting materials for efficient perovskite solar cells. Chemical Communications, 51(85):15518-15521.   DOI
21 Shi, J., Dong, J., Lv, S., Xu, Y., Zhu, L., Xiao, J., ... & Meng, Q. (2014). Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Applied Physics Letters, 104(6):063901.   DOI
22 Ku, Z., Rong, Y., Xu, M., Liu, T., & Han, H. (2013). Full printable processed mesoscopic $CH_3NH_3PbI_3/TiO_2$ heterojunction solar cells with carbon counter electrode. Scientific reports, 3.
23 Unger, E. L., Hoke, E. T., Bailie, C. D., Nguyen, W. H., Bowring, A. R., Heumuller, T., ... & McGehee, M. D. (2014). Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science, 7(11):3690-3698.   DOI
24 Zhou, H., Shi, Y., Dong, Q., Zhang, H., Xing, Y., Wang, K., ... & Ma, T. (2014). Hole-conductor-free, metal-electrode-free $TiO_2/CH_3NH_3PbI_3$ heterojunction solar cells based on a lowtemperature carbon electrode. The journal of physical chemistry letters, 5(18):3241-3246.   DOI
25 Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., ... & Gratzel, M. (2014). A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345(6194):295-298.   DOI
26 Li, X., Tschumi, M., Han, H., Babkair, S. S., Alzubaydi, R. A., Ansari, A. A., ... & Gratzel, M. (2015). Outdoor Performance and Stability under Elevated Temperatures and Long-Term Light Soaking of Triple-Layer Mesoporous Perovskite Photovoltaics. Energy Technology, 3(6):551-555.   DOI
27 Snaith, H. J., Abate, A., Ball, J. M., Eperon, G. E., Leijtens, T., Noel, N. K., ... & Zhang, W. (2014). Anomalous hysteresis in perovskite solar cells. The journal of physical chemistry letters, 5(9):1511-1515.   DOI
28 Brivio, F., Walker, A. B., & Walsh, A. (2013). Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. Apl Materials, 1(4):042111.   DOI
29 Blank, H., & Amelinckx, S. (1963). Direct observation of ferroelectric domains in barium titanate by means of the electron microscope. Applied Physics Letters, 2(7):140-142.   DOI
30 Tress, W., Marinova, N., Moehl, T., Zakeeruddin, S. M., Nazeeruddin, M. K., & Gratzel, M. (2015). Understanding the rate-dependent J-V hysteresis, slow time component, and aging in $CH_3NH_3PbI_3$ perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science, 8(3):995-1004.   DOI
31 Zhang, Y., Liu, M., Eperon, G. E., Leijtens, T. C., McMeekin, D., Saliba, M., ... & Johnston, M. B. (2015). Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells. Materials Horizons, 2(3):315-322   DOI
32 Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G., & Wei, S. H. (2015). Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites. Angewandte Chemie, 127(6):1811-1814.   DOI
33 Azpiroz, J. M., Mosconi, E., Bisquert, J., & De Angelis, F. (2015). Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy & Environmental Science, 8(7):2118-2127.   DOI
34 Eames, C., Frost, J. M., Barnes, P. R., O'regan, B. C., Walsh, A., & Islam, M. S. (2015).
35 Haruyama, J., Sodeyama, K., Han, L., & Tateyama, Y. (2015). First-principles study of ion diffusion in perovskite solar cell sensitizers. Journal of the American Chemical Society, 137(32):10048-10051.   DOI
36 Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., ... & Huang, J. (2015). Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature materials, 14(2):193-198.   DOI
37 Yuan, Y., Chae, J., Shao, Y., Wang, Q., Xiao, Z., Centrone, A., & Huang, J. (2015). Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Advanced Energy Materials, 5(15).
38 Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A., & Guloy, A. M. (1995). Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets. Science, 267(5203):1473-1476.   DOI
39 Leijtens, T., Hoke, E. T., Grancini, G., Slotcavage, D. J., Eperon, G. E., Ball, J. M., ... & McGehee, M. D. (2015). Mapping Electric Field-Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films. Advanced Energy Materials, 5(20).
40 Green, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature Photonics, 8(7):506-514.   DOI
41 Mitzi, D. B., Chondroudis, K., & Kagan, C. R. (2001). Organicinorganic electronics. IBM journal of research and development, 45(1):29-45.   DOI
42 NREL Efficiency Chart. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed April 19, 2016).
43 Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17):6050-6051.   DOI
44 Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., & Park, N. G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10):4088-4093.   DOI
45 Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., ... & Gratzel, M. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2.
46 Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Gratzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature,
47 Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science, 338(6107):643-647.   DOI
48 Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C. S., Chang, J. A., ... & Gratzel, M. (2013). Efficient inorganic- organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 7(6):486-491.   DOI
49 Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., & Seok, S. I. (2013). Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano letters, 13(4):1764-1769.   DOI
50 Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467):395-398.   DOI
51 Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature materials, 13(9):897-903.   DOI
52 Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535):476-480.   DOI
53 Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240):1234-1237.   DOI