Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.8.2185

Photoelectrochemical Cell Study on Closely Arranged Vertical Nanorod Bundles of CdSe and Zn doped CdSe Films  

Soundararajan, D. (Division of Applied Chemistry & Biotechnology, Hanbat National University)
Yoon, J.K. (Division of Applied Chemistry & Biotechnology, Hanbat National University)
Kwon, J.S. (Division of Applied Chemistry & Biotechnology, Hanbat National University)
Kim, Y.I. (Division of Applied Chemistry & Biotechnology, Hanbat National University)
Kim, S.H. (Division of Applied Chemistry & Biotechnology, Hanbat National University)
Park, J.H. (Division of Applied Chemistry & Biotechnology, Hanbat National University)
Kim, Y.J. (Division of Applied Chemistry & Biotechnology, Hanbat National University)
Park, D.Y. (Department of Applied Materials Engineering, Hanbat National University)
Kim, B.C. (ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, University of Wollongong)
Wallac, G.G. (ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, University of Wollongong)
Ko, J.M. (Division of Applied Chemistry & Biotechnology, Hanbat National University)
Publication Information
Abstract
Closely arranged CdSe and Zn doped CdSe vertical nanorod bundles were grown directly on FTO coated glass by using electrodeposition method. Structural analysis by XRD showed the hexagonal phase without any precipitates related to Zn. FE-SEM image showed end capped vertically aligned nanorods arranged closely. From the UV-vis transmittance spectra, band gap energy was found to vary between 1.94 and 1.98 eV due to the incorporation of Zn. Solar cell parameters were obtained by assembling photoelectrochemical cells using CdSe and CdSe:Zn photoanodes, Pt cathode and polysulfide (1M $Na_2S$ + 1M S + 1M NaOH) electrolyte. The efficiency was found to increase from 0.16 to 0.22 upon Zn doping. Electrochemical impedance spectra (EIS) indicate that the charge-transfer resistance on the FTO/CdSe/polysulfide interface was greater than on FTO/CdSe:Zn/polysulfide. Cyclic voltammetry results also indicate that the FTO/CdSe:Zn/polysulfide showed higher activity towards polysulfide redox reaction than that of FTO/CdSe/polysulfide.
Keywords
CdSe & CdSe:Zn nanorod bundled film; Electrodeposition; Photoelectrochemical cell study; Electrochemical impedance & voltammetric studies;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Elias, J.; Tena-Zaera, R.; Guillaume-Yangshu, W.; Levy-Clement, C. Chem. Mater. 2008, 20, 6633.   DOI
2 Lee, W. J.; Ramasamy, E.; Lee, D. Y.; Song, J. S. ACS Appl. Mater. Interfaces 2009, 1, 1145.   DOI
3 Xie, Y. Electrochim. Acta 2006, 51, 3399.   DOI
4 Yuh-Lang Lee, B.; Yi-Siou, L. Adv. Funct. Mater. 2009, 19, 604.   DOI   ScienceOn
5 Mao-Quan, C.; Ye, S.; Xiao-Yan, S.; Guo-Jie, L. Physica. E 2006, 35, 75.   DOI
6 Sun-Ki, M.; Oh-Sim, J.; Kwang-Deog, J.; Rajaram, S. M.; Sung-Hwan, H. Electrochem. Commun. 2006, 8, 223.   DOI
7 Venkatachalam, S.; Mangalaraj, D.; Narayandass, S. K.; Kim, K.; Yi, J. Physica B 2005, 358, 27.   DOI
8 Mandal, K. C. J. Mater. Sci. Lett. 1980, 9, 1203.   DOI
9 Murali, R.; Jayasuthaa, B. Sol. Energy 2009, 83, 891.   DOI
10 Soundararajan, D.; Mangalaraj, D.; Nataraj, D.; Dorosinskii, L.; Santoyo-Salazar, J.; Jeon, H. C.; Kang, T. W. Appl. Surf. Sci. 2009, 255, 7517.   DOI
11 Levy-Clement, C.; Tena-Zaera, R.; Ryan, M. A.; Katty, A.; Hodes, G. Adv. Mater. 2005, 17, 512.
12 Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nat. Mater. 2005, 4, 455.   DOI
13 H. Chenga, H. Y.; Chaoa, Y. H.; Changa, C. H.; Hsua, C. L.; Chenga, T. T.; Chena, Y. F.; Chena, M. W. Chub, Physica E 2008, 40, 2000.   DOI
14 Mohamed S. El-Deab Int. J. Electrochem. Sci. 2009, 4, 1329.
15 Elango, T.; Subramanian, V.; Murali, K. R. Surf. Coat. Technol. 2000, 123, 8.   DOI
16 Hernandez-Perez, M. A.; Aguilar-Hernandez, J.; Contreras-Puente, G.; Vargas-Garcia, J. R.; Rangel-Salinas, E. Physica E 2008, 40, 2535.   DOI
17 Wang, X.; Gao-Rong, H. Microelectron. Eng. 2003, 66, 166.   DOI
18 Tena-Zaera, R.; Ryan, M. A.; Katty, A.; Hodes, G.; Bastide, S.; Levy-Clement, C. Comptes Rendus Chimie. 2006, 9, 717.   DOI
19 Chavhan, S. D.; Mane, R. S.; Wonjoo, L. ; Senthilarasu, S.; Sung-Hwan, H.; Lee, J.; Soo-Hyoung, L.; Electrochim. Acta 2009, 54, 3169.   DOI
20 Ju-Hyun, A.; Mane, R. S.; Todkar, V. V.; Sung-Hwan, H. Int. J. Electrochem. Sci. 2007, 2, 517.
21 Shen, Q.; Sato, T.; Hashimoto, M.; Chen, C.; Toyoda, T. Thin Solid Films 2006, 499, 299.   DOI
22 Park, Y. M.; Andre, R.; Kasprzak, J.; Dang, L. S.; Bellet-Amalric, E. Appl. Surf. Sci. 2007, 253, 6946.   DOI
23 Levichev, S.; Chahboun, A.; Basa, P.; Rolo, A. G.; Barradas, N. P.; Alves, E.; Horvath, Zs. J.; Conde, O.; Gomes, M. J. M. Microelectron. Eng. 2008, 85, 2374.   DOI
24 Jeon, M.; Kamisako, K. Mater. Lett. 2009, 63, 777.   DOI   ScienceOn
25 Kar, J. P.; Kumar, M.; Choi, J. H.; Das, S. N.; Choi, S. Y.; Myoung, J. M. Solid State Commun. 2009, 149, 1337.   DOI
26 Zhang, Z. H.; Qi, X. Y.; Jian, J. K.; Duan, X. F. Micron. 2006, 37, 229.   DOI
27 Klein, D. L.; Roth, R.; Lim, A. K. L.; Alivisatos, A. P.; McEuen, P. L. Nature 1997, 389, 699.   DOI
28 Luo, L.; Zhang, Y.; Mao, S. S.; Lin, L. Sens. Actuators, A 2006, 127, 201.   DOI
29 Sheini, F. J.; Joag, D. S.; More, M. A. Ultramicroscopy 2009, 109, 418.   DOI
30 Baxter, J. B.; Aydil, E. S. Sol. Energy Mater. Sol. Cells 2006, 90, 607.   DOI
31 Bang, J. H.; Kamat, P. V. ACS Nano 2009, 3, 1467.   DOI
32 Ganesh, T.; Mane, R. S.; Cai, G.; Jin-Ho, C.; Sung-Hwan, H. J. Phys. Chem. C 2009, 113, 7666.   DOI
33 Sun-Ki, M.; Oh-Sim, J.; Kwang-Deog, J.; Mane, R. S.; Sung-Hwan, H. Electrochem. Commun. 2006, 8, 223.   DOI