Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.7.2067

Effect of Hydrogen Treatment on Anatase TiO2 Nanotube Arrays for Photoelectrochemical Water Splitting  

Kim, Hyun Sik (School of Chemical & Biological Engineering, Seoul National University)
Kang, Soon Hyung (Department of Chemistry Education, Chonnam National University)
Publication Information
Abstract
Hydrogen ($H_2$) treatment using a two-step $TiO_2$ nanotube (TONT) film was performed under various annealing temperatures from $350^{\circ}C$ to $550^{\circ}C$ and significantly influenced the extent of hydrogen treatment in the film. Compared with pure TONT films, the hydrogen-treated TONT (H:TONT) film showed substantial improvement of material features from structural, optical and electronic aspects. In particular, the extent of enhancement was remarkable with increasing annealing temperature. Light absorption by the H:TONT film extended toward the visible region, which was attributable to the formation of sub-band-gap states between the conduction and valence bands, resulting from oxygen vacancies due to the $H_2$ treatment. This increased donor concentration about 1.5 times higher and improved electrical conductivity of the TONT films. Based on these analyses and results, photoelectrochemical (PEC) performance was evaluated and showed that the H:TONT film prepared at $550^{\circ}C$ exhibited optimal PEC performance. Approximately twice higher photocurrent density of 0.967 $mA/cm^2$ at 0.32 V vs. NHE was achieved for the H:TONT film ($550^{\circ}C$) versus 0.43 $mA/cm^2$ for the pure TONT film. Moreover, the solar-to-hydrogen efficiency (STH, ${\eta}$) of the H:TONT film was 0.95%, whereas a 0.52% STH efficiency was acquired for the TONT film. These results demonstrate that hydrogen treatment of TONT film is a simple and effective tool to enhance PEC performance with modifying the properties of the original material.
Keywords
Hydrogen treatment; $TiO_2$ nanotube; Doping effect; Photoelectrochemical water splitting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fujishima, A.; Honda, K. Nature 1972, 238, 37.   DOI   ScienceOn
2 Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. Renewable Sustainable Energ. Rev. 2007, 11, 401.   DOI   ScienceOn
3 Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446.   DOI   ScienceOn
4 Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, K. S. J. Catal. 2007, 246, 362.   DOI   ScienceOn
5 Liu, M.; Snapp, N.; Park, H. Chem. Sci. 2011, 2, 80.   DOI   ScienceOn
6 Hwang, Y. J.; Hahn, C.; Liu, B.; Yang, P. ACS Nano 2012, 6, 5060.   DOI   ScienceOn
7 Mor, G. K.; Prakasam, H. E.; Varghese, O. K.; Shankar, K.; Grimes, C. A. Nano Lett. 2007, 7, 2356.   DOI   ScienceOn
8 Linsebigler, A. L.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735.   DOI   ScienceOn
9 Shi, J.; Hara, Y.; Sun, C.; Anderson, M. A.; Wang, X. Nano Lett. 2011, 11, 3413.
10 Ma, X.; Wu, Y.; Lu, Y, Xu, J.; Wang, Y.; Zhu, Y. J. Phys. Chem. C 2011, 115, 16963.   DOI   ScienceOn
11 Nakamura, R.; Tanaka, T.; Nakato, Y. J. Phys. Chem. B 2004, 108, 10617.
12 Sang, L.; Zhi-yu, Z.; Guang-mei, B.; Chun-xu, D.; Chong-fang, M. Int. J. Hydrogen Energy 2012, 37, 854.   DOI   ScienceOn
13 Kang, S. H.; Kim, J.-Y.; Kim, H. S.; Sung, Y.-E. J. Ind. Eng. Chem. 2008, 14, 52.   DOI   ScienceOn
14 Prakasam, H. E.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Phys. Chem. C 2007, 111, 7235.   DOI   ScienceOn
15 Kang, C.; Xie, Y.; Xie, E. Optoelectron. Adv. Mater.-Rapid Commun. 2011, 5, 518.
16 Ji, Y.; Lin, K.-C.; Zheng, H.; Zhu, J.-J.; Samia, A. C. S. Electrochem. Comm. 2011, 13, 1013.   DOI   ScienceOn
17 Mir, N.; Lee, K.; Paramasivam, I.; Schmuki, P. Chem. Eur. J. 2012, 18, 11862.   DOI   ScienceOn
18 Kang, S. H.; Lim, J.-W.; Kim, H. S.; Kim, J.-Y.; Sung, Y.-E. Chem. Mater. 2009, 21, 2777.   DOI   ScienceOn
19 Kang, S. H.; Kim, J.-Y.; Sung, Y.-E. J. Phys. Chem. C 2007, 111, 9614.   DOI   ScienceOn
20 Chae, Y.; Park. J.; Mori, S.; Suzuki, M. J. Ind. Eng. Chem. 2012, 18, 1572.   DOI   ScienceOn
21 Lazarus, M. S.; Sham, T. K. Chem. Phys. Lett. 1982, 92, 670.   DOI   ScienceOn
22 Gao, H.; Dai, Z. D.; Qu, Y. Chem. Eng. Technol. 2009, 32, 867.   DOI   ScienceOn
23 Barsoukov, E.; Macdonald, J. R. Impedance Spectroscopy Theory, Experiment, and Applications; Wiley: New Jersey, 2005; chapter 4.
24 Fabregat-Santiago, F.; Garcia-Belmonte, G.; Bisquert, J.; Bogdanoff, P.; Zaban, A. J. Electrochem. Soc. 2003, 150, E293.   DOI   ScienceOn
25 Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 3026.   DOI   ScienceOn