• Title/Summary/Keyword: balancing control

Search Result 636, Processing Time 0.035 seconds

Attitude and Direction Control of the Unicycle Robot Using Fuzzy-Sliding Mode Control (퍼지-슬라이딩모드 제어기를 이용한 외바퀴 로봇의 자세제어 및 방향제어)

  • Lee, Jae-Oh;Han, Seong-Ik;Han, In-Woo;Lee, Seok-In;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.275-284
    • /
    • 2012
  • This paper proposes an attitude and direction control of a single wheel balanced robot. A unicycle robot is controlled by two independent control laws: the mobile inverted pendulum control method for pitch axis and the reaction wheel pendulum control method for roll axis. It is assumed that both roll dynamics and pitch dynamics are decoupled. Therefore the roll and pitch dynamics are obtained independently considering the interaction as disturbances to each other. Each control law is implemented by a controller separately. The unicycle robot has two DC motors to drive the disk for roll and to drive the wheel for pitch. Since there is no force to change the yaw direction, the present paper proposes a method for changing the yaw direction. The angle data are obtained by a fusion of a gyro sensor and an accelerometer. Experimental results show the performance of the controller and verify the effectiveness of the proposed control algorithm.

Novel Control of a Modular Multilevel Converter for Photovoltaic Applications

  • Shadlu, Milad Samady
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.103-110
    • /
    • 2017
  • The number of applications of solar photovoltaic (PV) systems in power generation grids has increased in the last decade because of their ability to generate efficient and reliable power in a variety of low installation in domestic applications. Various PV converter topologies have therefore emerged, among which the modular multilevel converter (MMC) is very attractive due to its modularity and transformerless features. The modeling and control of the MMC has become an interesting issue due to the extremely large expansion of PV power plants at the residential scale and due to the power quality requirement of this application. This paper proposes a novel control method of MMC which is used to directly integrate the photovoltaic arrays with the power grid. Traditionally, a closed loop control has been used, although circulating current control and capacitors voltage balancing in each individual leg have remained unsolved problem. In this paper, the integration of model predictive control (MPC) and traditional closed loop control is proposed to control the MMC structure in a PV grid tied mode. Simulation results demonstrate the efficiency and effectiveness of the proposed control model.

A Study on Robust Control of Mobile Robot with Single wheel Driving Robot for Process Automation (공정 자동화를 위한 싱글 휠 드라이빙 모바일 로봇의 견실제어에 관한 연구)

  • Shin, Haeng-Bong;Cha, BO-Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • This paper presents a new approach to control of stable motion of single wheel driving robot system of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel. This robot doesn'thave any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Lagrange equations was applied to derive the dynamic equations of the one wheel driving robot to implement the dynamic speed control of the mobile robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and optical regulator are utilized to prove the reliability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based robust controller has been adopted to reduce the vibration by the situation function. The optimal controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the driving wheel. The control performance of the control systems from a single dynamic model has been illustrated by the real experiments.

Enhancement of Cell Voltage Balancing Control by Zero Sequence Current Injection in a Modular Multilevel Converter (Modular Multilevel Converter에서 영상분 전류주입에 의한 셀간 전압평형화 제어의 향상)

  • Kim, Tae-Hyeong;Kwon, Byung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.159-160
    • /
    • 2014
  • 본 논문에서는 ${\Delta}$결선으로 구성된 Modular Multilevel Converter(MMC)에서 흐르는 전류가 매우 적은 경우 계통에 영향이 없이 셀 직류전압의 불평형을 제어할 수 있도록 영상분전류를 주입하는 방법을 제안하였고, 시뮬레이션을 통해 검증하였다.

  • PDF

Virtual Factory for Electronics Assembly Industry

  • Stefanov, Dimitor H.;Sung, Hak-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.84.1-84
    • /
    • 2001
  • Funded by the Singapore National Science and Technology Board (NSTB), CAMTech is collaborating with a Singaporean research institute and two industry partners with the objective to improve electronics assembly processes. The goal of this project is to visualise the behaviour of an electronics assembly industry by simulating, visualising the discrete events of the entire manufacturing processes and observing the flow of materials, size of buffers, and line balancing. The traditional scenario - from the customer placing order for a product to delivery - goes through various phases including manufacturing the product. Several major electronics manufacturing stages can be addressed: fabrication, assembly ...

  • PDF

A Study on Performance analysis of a modified parallel manipulator (수정된 병렬형매니퓰레이터의 성능해석에 관한 연구)

  • 김주영;배재만;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.557-560
    • /
    • 2000
  • The Purpose of this study is analysis of kinematic for a modified manipulator and experimental test to certify auto-balancing operation. The test is carried out as follows. First, we solve the inverse kinematics and then do a closed loop control. Second we confirm translation displacement and rotation angle of a manipulator.

  • PDF

A modeling of manufacturing system and a model analysis by a SIMAN language (생산공정의 모델링과 SIMAN 언어에 의한 모델분석)

  • 이만형;김경천;한성현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.300-306
    • /
    • 1987
  • This paper deals with a modeling of manufacturing system and a model analysis by a SIMAN language. A flow of production process is analyzed, and a mathematical model on the basis of the analyzed data is simulated by a SIMAN language. An object of this study is to achieve an optimization of production a reduction of cost, and an improvement of quality by a applicable line-balancing technique and an optimization technique in a real factor induced an analysis and synthesis of the result of simulation.

  • PDF

Input Series-Output Parallel Connected Converter System for High Voltage Power Conversion Applications (고 입력전압 전력변환 응용에 적합한 입력직렬-출력병렬 컨버터 시스템)

  • 김정원;조보형
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.455-459
    • /
    • 1998
  • In this paper input Series-Output Parallel connected converter configuration for high voltage power conversion applications is proposed and a control method to solve the problems of Input Series-Output Paralles connected converter configuration is introduced. In this configuration snubber circuit or voltage balancing controller that is necessary for the series connection of switching devices is not needed. The effectiveness of this proposed configuration is verified by simulation.

  • PDF

Frequency weighted reduction using Lyapunov inequalities (Lyapunov 부등식을 이용한 주파수하중 차수축소)

  • 오도창;정은태;이상경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.12-12
    • /
    • 2000
  • This paper consider a new weighted model reduction using block diagonal solutions of Lyapunov inequalities. With the input and/or output weighting function, the stability of reduced order system is quaranteed and a priori error bound is proposed. to achieve this, after finding the solutions of two Lyapunov inequalities and balancing the full order system, we find the reduced order systems using the direct truncation and the singular perturbation approximation. The proposed method is compared with other existing methods using numerical example.

  • PDF