• 제목/요약/키워드: bacterial consortium

검색결과 49건 처리시간 0.023초

Biological Control and Plant-Growth Promotion by Bacillus Strains from Milk

  • Nautiyal Chandra Shekhar;Mehta Sangeeta;Singh Harikesh Bahadur
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.184-192
    • /
    • 2006
  • Six-hundred bacterial strains from human milk and milk from Sahiwal cows, Holstein Friesian cows, and buffaloes were screened for their ability to suppress phytopathogenic fungi under in vitro conditions. A consortium of 3 strains, viz., Bacillus lentimorbus B-30486 (B-30486), B. subtilis B-30487 (B-30487), and B. lentimorbus B-30488 (B-30488), isolated from Sahiwal cow milk resulted in better biological control and plant-growth promotion than single-strain treatments. For commercial-scale production of a bioinoculant, the solid-state fermentation of sugarcane agro-industrial residues, i.e., molasses, press mud, and spent wash, using the consortium of B-30486, B-30487, and B-30488, resulted in a value-added product, useful for enhancing plant growth. The application of the consortium to sugarcane fields infested with Fusarium moniliforme and Colletotrichum falcatum resulted in a reduction of mortality and significantly higher (P=0.05) plant height, number of tillers, and cane girth when compared with the control. Furthermore, under field conditions, the treatment of sugarcane with the consortium resulted in significantly (P=0.05) greater plant growth compared with nonbacterized plants. Accordingly, this is the first report on the effective use of bacteria isolated from milk for biological control and enhancing plant growth under field conditions. Furthormore, a solid-state fermentation technology was developed that facilitates the economic utilization of agro-industrial residues for environmental conservation and improving plant and soil health.

쿠웨이트 원유오염 토양 내 잔류 난분해성 유기물 분해능 지닌 토착 미생물 배양체 획득을 위한 선택적 계대배양 실험 연구 (Selective Enrichment to Obtain an Indigenous Microbial Consortium Degrading Recalcitrant TPHs(total petroleum hydrocarbons) from Petroleum-contaminated Soil in Kuwait)

  • 하진호;김성훈;임현수;정우식;김다정;이금영;박준홍
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권4호
    • /
    • pp.20-26
    • /
    • 2021
  • In this work, an indigenous microbial consortium was obtained by selectively cultivating microbes using a long-aged petroleum-contaminated soil (Kuwait) containing recalcitrant petroleum hydrocarbons. The obtained microbial consortium was able to grow on and degrade the remaining petroleum hydrocarbons which could not have been utilized by the indigenous microbes in the original Kuwait soil. The following microbial community analysis using 16S rRNA gene sequencing suggested that the enhanced degradation of the remaining recalcitrant petroleum hydrocarbons by the novel microbial consortium may have been attributed to the selected bacterial populations belonging to Bacillus, Burkholderia, Sphingobacterium, Lachnospiraceae, Prevotella, Haemophilus, Pseudomonas, and Neisseria.

A Microbial Consortium for the Bioremediation of Sulfate-Rich Wastewater Originating from an Edible Oil Industry

  • Pascual, Javier;Rodriguez, Alejandro;Delgado, Clara Elena;Rizo-Patron, Alejandra;Porcar, Manuel;Vilanova, Cristina
    • 한국미생물·생명공학회지
    • /
    • 제50권1호
    • /
    • pp.110-121
    • /
    • 2022
  • The effluents from industries processing vegetable oils are extremely rich in sulfates, often exceeding the maximum concentration allowed to release them to the environment. Biological sulfate reduction is a promising alternative for the removal of sulfates in this type of wastewater, which has other particularities such as an acidic pH. The ability to reduce sulfates has been widely described for a particular bacterial group (SRB: sulfate-reducing bacteria), although the reports describing its application for the treatment of sulfate-rich industrial wastewaters are scarce. In this work, we describe the use of a natural SRB-based consortium able to remove above 30% of sulfates in the wastewater from one of the largest edible oil industries in Peru. Metataxonomic analysis was used to analyse the interdependencies established between SRB and the native microbiota present in the wastewater samples, and the performance of the consortium was quantified for different sulfate concentrations in laboratory-scale reactors. Our results pave the way towards the use of this consortium as a low-cost, sustainable alternative for the treatment of larger volumes of wastewater coming from this type of industries.

Synergistic Utilization of Dichloroethylene as Sole Carbon Source by Bacterial Consortia Isolated from Contaminated Sites in Africa

  • Olaniran, Ademola O.;Mfumo, Nokukhanya H.;Pillay, Dorsamy;Pillay, Balakrishna
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권3호
    • /
    • pp.205-210
    • /
    • 2006
  • The widespread use and distribution of chloroethylene organic compounds is of serious concern owing to their carcinogenicity and toxicity to humans and wildlife. In an effort to develop active bacterial consortia that could be useful for bioremediation of chloroethylene-contaminated sites in Africa, 16 combinations of 5 dichloroethylene (DCE)-utilizing bacteria, isolated from South Africa and Nigeria, were assessed for their ability to degrade cis- and trans- DCEs as the sole carbon source. Three combinations of these isolates were able to remove up to 72% of the compounds within 7 days. Specific growth rate constants of the bacterial consortia ranged between 0.465 and $0.716\;d^{-1}$ while the degradation rate constants ranged between 0.184 and $0.205\;d^{-1}$ with $86.36{\sim}93.53\;and\;87.47{\sim}97.12%$ of the stoichiometric-expected chloride released during growth of the bacterial consortia in cis- and trans-DCE, respectively. Succession studies of the individual isolates present in the consortium revealed that the biodegradation process was initially dominated by Achromobacter xylosoxidans and subsequently by Acinetobacter sp. and Bacillus sp., respectively. The results of this study suggest that consortia of bacteria are more efficient than monocultures in the aerobic biodegradation of DCEs, degrading the compounds to levels that are up to 60% below the maximum allowable limits in drinking water.

A Sporolactobacillus-, Clostridium-, and Paenibacillus- Dominant Microbial Consortium Improved Anaerobic RDX Detoxification by Starch Addition

  • Khan, Muhammad Imran;Yoo, Keunje;Kim, Seonghoon;Cheema, Sardar Alam;Bashir, Safdar;Park, Joonhong
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권6호
    • /
    • pp.839-847
    • /
    • 2020
  • In the present study, an anaerobic microbial consortium for the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was selectively enriched with the co-addition of RDX and starch under nitrogen-deficient conditions. Microbial growth and anaerobic RDX biodegradation were effectively enhanced by the co-addition of RDX and starch, which resulted in increased RDX biotransformation to nitroso derivatives at a greater specific degradation rate than those for previously reported anaerobic RDX-degrading bacteria (isolates). The accumulation of the most toxic RDX degradation intermediate (MNX [hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine]) was significantly reduced by starch addition, suggesting improved RDX detoxification by the co-addition of RDX and starch. The subsequent MiSeq sequencing that targeted the bacterial 16S rRNA gene revealed that the Sporolactobacillus, Clostridium, and Paenibacillus populations were involved in the enhanced anaerobic RDX degradation. These results suggest that these three bacterial populations are important for anaerobic RDX degradation and detoxification. The findings from this work imply that the Sporolactobacillus, Clostridium, and Paenibacillus dominant microbial consortium may be valuable for the development of bioremediation resources for RDX-contaminated environments.

아산화질소 환원 세균 컨소시움의 특성 (Characterization of a Nitrous Oxide-reducing Bacterial Consortium)

  • 박형주;권지현;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제47권4호
    • /
    • pp.630-638
    • /
    • 2019
  • 아산화질소는 이산화탄소보다 약 310배 높은 지구온난화 지수를 갖는 주요 온실가스이다. 본 연구에서는 아산화질소 배출저감을 위해 고도처리슬러지를 접종원으로 이용하여 아산화질소 환원 컨소시움을 확보하였다. 이 컨소시움의 우점종은 Sulfurovum (17.95%), Geobacter (14.63%), Rectinema(11.45%)와 Chlorobium (8.24%)이었다. 아산화질소 환원 컨소시움의 활성에 미치는 C/N 비(mol·mol-1), 탄소원의 영향을 조사한 결과, C/N 비 6.3 및 아세트산을 탄소원으로 공급한 조건에서 최대 아산화질소 환원 활성을 나타냈다. 또한, 본 컨소시움의 3,000 ppm 이하의 아산화질소 농도 범위에서 아산화질소 농도가 증가할수록 환원속도도 증가하였다. 속도론적 해석 결과, 아산화질소 환원 컨소시움의 최대 아산화질소 환원 속도는 163.9 ㎍-N·g VSS-1·h-1이었다. 본 Consortium은 아산화질소를 N2로 환원하는데 관여를 nosZ 뿐만 아니라, 질산염을 아질산염으로 환원하는 narG, 아질산염을 일산화질소로 환원하는 nirK 유전자 및 일산화질소를 아산화질소를 환원하는 norB 유전자를 모두 보유하고 있었다. 이는 본 컨소시움은 아산화질소 제거 공정 뿐 만 아니라, 탈질공정에도 활용 가능한 유용한 미생물 자원임을 의미한다.

상업용 훈증제인 Cis-와 Trans-1,3-Dichloropropene(1,3-D)을 차별적으로 분해하는 Bacterial Consortium에 영향을 주는 다양한 이차 탄소원들의 효과 (Influence of a Variety of Second Carbon Substrates on the Bacterial Consortium Differentially Degrading Cis- and Trans-1,3-Dichloropropene (1,3-D))

  • 정근욱
    • 대한환경공학회지
    • /
    • 제22권7호
    • /
    • pp.1243-1252
    • /
    • 2000
  • 휘발성 훈증제인 cis-와 trans-1,3-D의 각각에 대한 분해력 향상은 몇몇 연구자들에 의해 이루어져왔다. 본 연구는 cis-와 trans-1,3-D에 대해 서로 다른 속도에서 각각의 분해력 증진과 미생물과의 관련성을 조사한 것으로, 미생물이 휘발성을 갖는 독성 유기화합물의 분해를 향상시키는 데 관여하고 있음이 관찰되었다. 1,3-D로 야외(field)처리되어 적응되어 왔던 토양으로부터, 1,3-D의 분해가 확인된 토양시료를 채취하여 1,3-D를 분해할 수 있는 혼합 배양세균을 분리하였다. 이렇게 분리된 혼합 배양세균은 cis-1,3-D보다는 trans-1,3-D를 더 빨리 분해 시켰으나, 미생물 성장을 위한 탄소원으로 cis-와 trans-1,3-D만이 제공되었을 때는 분해가 일어나지 않는 반면, 적절한 2차 탄소원들이 존재할 때에는 cis-와 trans-1,3-D를 분해시켰다. 따라서, cis-와 trans-1,3-D의 분해는 공동대사과정(cometabolism)인 것으로 판단된다. 두 이성질체는, 토양여과액(soil leachate), tryptone, tryptophan, alanine이 포함된 시료가 2차 탄소원으로 제공되었을 때에는 분해가 이루어졌으나, 고온고압하에서 멸균시킨 토양추출액(soil extract), glucose, yeast extract 및 indole이 포함된 시료가 2차 탄소원으로 제공되었을 때는 두 이성질체 모두를 분해시키지 못했다. 상업용 훈증제로 이용되는 cis-와 trans-1,3-D를 다른 속도로 개별적으로 분해하는 혼합 미생물군은 형태학적인 구별방법에 의해 4개의 독립된 순수 colony로 구성되어 있는 것으로 관찰되었다.

  • PDF

Potential Use of Probiotic Consortium Isolated from Kefir for Textile Azo Dye Decolorization

  • Ayed, Lamia;Zmantar, Tarek;Bayar, Sihem;Charef, Abdelkrim;Achour, Sami;Mansour, Hedi Ben;Mzoughi, Ridha El
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권10호
    • /
    • pp.1629-1635
    • /
    • 2019
  • Azo dyes are recalcitrant pollutants, which are toxic, carcinogenic, mutagenic and teratogenic, that constitute a significant burden to the environment. The decolorization and the mineralization efficiency of Remazol Brillant Orange 3R (RBO 3R) was studied using a probiotic consortium (Lactobacillus acidophilus and Lactobacillus plantarum). Biodegradation of RBO 3R (750 ppm) was investigated under shaking condition in Mineral Salt Medium (MSM) solution at pH 11.5 and temperature $25^{\circ}C$. The bio-decolorization process was further confirmed by FTIR and UV-Vis analysis. Under optimal conditions, the bacterial consortium was able to decolorize the dye completely (>99%) within 12 h. The color removal was 99.37% at 750 ppm. Muliplex PCR technique was used to detect the Lactobacillus genes. Using phytotoxicity, cytotoxicity, mutagenicity and biototoxicity endpoints, toxicological studies of RBO 3R before and after biodegradation were examined. A toxicity assay signaled that biodegradation led to detoxification of RBO 3R dye.

부식토 유래 질산화세균 consortium의 질산화 유전자 거동 특성 (Nitrifying-genes Dynamics in the Enriched Bacterial Consortium Inoculated with Humic Soil)

  • 서윤주;이윤영;최형주;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제47권2호
    • /
    • pp.296-302
    • /
    • 2019
  • In this study, the effects of ammonium concentration ($117.5-1155.0mg-N{\cdot}l^{-1}$), nitrite concentration ($0-50.0mg-N{\cdot}l^{-1}$), and temperature ($15-35^{\circ}C$) on nitrification performance and its functional genes (amoA-arc, amoA-bac, hao) in an enriched consortium inoculated with humic acid were determined. Notably, the maximum nitrification rate value was observed at $315mg-N{\cdot}l^{-1}$ of ammonium, but the highest functional gene copy numbers were obtained at $630mg-N{\cdot}l^{-1}$ of ammonium. No inhibition of the nitrification rate and functional gene copy numbers was observed via the added nitrites. The optimum temperature for maximum nitrification performance was observed to be $30^{\circ}C$. The amoA-bac copy numbers were also greater than those of amoA-arc under all test conditions. Notably, amoA-arc copy numbers and nitrification efficiency showed a positive relationship in network analysis. These results indicate that ammonium-oxidizing archaea and bacteria play important roles in the nitrification process.

영양원 변화가 Kerosene 분해율 및 분해균주 성장에 미치는 영향 (The Effect of Nutrient Amendments on Biodegradability of Kerosene and Growth of Kerosene-degrading Microorganisms)

  • 정규혁
    • 한국환경보건학회지
    • /
    • 제25권3호
    • /
    • pp.7-12
    • /
    • 1999
  • Bioremediation is the technology to harness nature's biodegradative capabilities to remove or detoxify pollutions that threaten public health as environmental contaminants. Composting may become one of major bioremediation technologies for treating soils contaminated with petroleum if the fate of contaminants during composting is better understood Most composting research of petroleum was primarily focused on removing contaminant by optimizing composting conditions. Accordingly, laboratory feasibility studies may be useful to establish a realistic basis in co-composting complex substrate such as petroleum hydrocarbons. The purpose of this study was to assess the optimal conditions of kerosene biodegradation following supplementation with nutrient amendments under simulated composting conditions. Although it increased the growth of bacterial consortium, addition of co-substrates 0.5%(w/v) such as acetic acid, citric acid, glucose, and malic acid was not beneficial. Combination of nitrogen and phosphorous source enhanced kerosene biodegradation and reduced VOC evolution. These results showed that kerosene was able to utilize in bioremediation technology.

  • PDF