Biological Control and Plant-Growth Promotion by Bacillus Strains from Milk

  • Published : 2006.02.01

Abstract

Six-hundred bacterial strains from human milk and milk from Sahiwal cows, Holstein Friesian cows, and buffaloes were screened for their ability to suppress phytopathogenic fungi under in vitro conditions. A consortium of 3 strains, viz., Bacillus lentimorbus B-30486 (B-30486), B. subtilis B-30487 (B-30487), and B. lentimorbus B-30488 (B-30488), isolated from Sahiwal cow milk resulted in better biological control and plant-growth promotion than single-strain treatments. For commercial-scale production of a bioinoculant, the solid-state fermentation of sugarcane agro-industrial residues, i.e., molasses, press mud, and spent wash, using the consortium of B-30486, B-30487, and B-30488, resulted in a value-added product, useful for enhancing plant growth. The application of the consortium to sugarcane fields infested with Fusarium moniliforme and Colletotrichum falcatum resulted in a reduction of mortality and significantly higher (P=0.05) plant height, number of tillers, and cane girth when compared with the control. Furthermore, under field conditions, the treatment of sugarcane with the consortium resulted in significantly (P=0.05) greater plant growth compared with nonbacterized plants. Accordingly, this is the first report on the effective use of bacteria isolated from milk for biological control and enhancing plant growth under field conditions. Furthormore, a solid-state fermentation technology was developed that facilitates the economic utilization of agro-industrial residues for environmental conservation and improving plant and soil health.

Keywords

References

  1. Asaka, O. and M. Shoda. 2002. Biological control of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Envir. Microbiol. 62: 4081-4085
  2. Bettiol, W. 1999. Effectiveness of cow's milk against zucchini squash powdery mildew (Sphaerotheca fulginea) in greenhouse conditions. Crop Protec. 18: 489-492 https://doi.org/10.1016/S0261-2194(99)00046-0
  3. Chanway, C. P. 1998. Bacterial endophytes: Ecological and practical implication. Sydowia 149-170
  4. Collins, D. P. and B. J. Jacobson. 2003. Optimizing a Bacillus subtilis isolate for biological control of sugar beet Cercospora leaf spot. Biol. Control 26: 153-161 https://doi.org/10.1016/S1049-9644(02)00132-9
  5. Das, P., Anuradha Ganesh, and Pramod Wangikar. 2004. Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products. Biomass Bioener. 27: 445-457 https://doi.org/10.1016/j.biombioe.2004.04.002
  6. Duffy, B. K. and D. M. Weller. 1995. Use of Gaeumannomyces graminis var. graminis alone and in combination with fluorescent Pseudomonas spp. to suppress take-all on wheat. Plant Dis. 79: 907-911 https://doi.org/10.1094/PD-79-0907
  7. Emmert, E. A. B. and J. Handelsman. 1999. Biological control of plant disease: A (Gram-) positive perspective. FEMS Microbiol. Lett. 171: 1-9 https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  8. Glick, B. R. and Y. Bashan. 1997. Genetic manipulation of plant growth promoting bacteria to enhance biological control of phytopathogens. Biotech. Advances 15: 353-378 https://doi.org/10.1016/S0734-9750(97)00004-9
  9. Gordon, R. E., W. C. Haynes, and C. H. Pang. 1973. The Genus Bacillus. Agriculture Handbook no. 427, United States Department of Agriculture, U.S. Government Printing Office, Washington DC, U.S.A
  10. Idriss, E. E., O. Makarewicz, A. Farouk, K. Rosner, R. Greiner, H. Bochow, T. Richter, and R. Borriss. 2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant growth promoting effect. Microbiology 148: 2097-2109 https://doi.org/10.1099/00221287-148-7-2097
  11. Jetiyanon, K. and J. W. Kloepper. 2002. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol. Control 24: 285-291 https://doi.org/10.1016/S1049-9644(02)00022-1
  12. Lemanceau, P. and C. Alabouvette. 1993. Suppression of Fusarium wilts by fluorescent Pseudomonads: Mechanisms and application. Can. J. Microbiol. 43: 895-914
  13. Mehta, S. and C. S. Nautiyal. 2001. An efficient method for qualitative screening of phosphate solubilizing bacteria. Curr. Microbiol. 43: 51-56 https://doi.org/10.1007/s002840010259
  14. Nautiyal, C. S. and P. Dion. 1990. Characterization of opine-utilizing microflora associated with samples of soil and plants. Appl. Environ. Microbiol. 56: 2576-2579
  15. Nautiyal, C. S. 1997. Rhizosphere competence of Pseudomonas sp. NBRI9926 and Rhizobium sp. NBRI9513 involved in the suppression of chickpea (Cicer arietinum L.) pathogenic fungi. FEMS Microbiol. Ecol. 23: 145-158 https://doi.org/10.1111/j.1574-6941.1997.tb00398.x
  16. Nautiyal, C. S. 2000. Biological control of plant diseases for agricultural sustainability, pp. 9-23. In: Upadhyay, R. K., K. G. Mukerji, and B. P. Chamola. (eds.), Biological Control Potential and its Exploitation in Sustainable Agriculture. Kluwer Academic/Plenum Publishers, New York, U.S.A
  17. Nautiyal, C. S., J. K. Johri, and H. B. Singh. 2002. Survival of rhizosphere competent Pseudomonas fluorescens biological control strain NBRI3009 in the soil and phytosphere. Can. J. Microbiol. 48: 588-601 https://doi.org/10.1139/w02-054
  18. Nautiyal, C. S. 2002. A biologically pure culture of bacteria which suppresses diseases caused by pathogens in chickpea crops and a culture of bacteria comprising a strain of Pseudomonas fluorescens. United States of America Patent Number 6495362
  19. Ogier, J. C., V. Lafarge, V. Girard, A. Rault, V. Maladen, A. Gruss, J. Y. Leveau, and A. Delacroix-Buchet. 2004. Molecular fingerprinting of dairy microbial ecosystems by use of temporal temperature and denaturing gradient gel electrophoresis. Appl. Envir. Microbiol. 70: 5628-5643 https://doi.org/10.1128/AEM.70.9.5628-5643.2004
  20. Panse, V. G. and P. V. Sukhatme. 1961. Statistical Methods for Agricultural Workers. Indian Council of Agricultural Research publication, New Delhi, India
  21. Pierson, E. A. and D. M. Weller. 1994. Use of mixtures of fluorescent Pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology 84: 940-947 https://doi.org/10.1094/Phyto-84-940
  22. Raaijmakers, J. M., M. Vlami, and J. T. de Souza. 2002. Antibiotic production by bacterial biological control agents. Antonie van Leeuwenhoek 81: 537-547 https://doi.org/10.1023/A:1020501420831
  23. Raupach, G. S. and J. W. Kloepper. 2000. Biological control of cucumber diseases in the field by plant growth promoting rhizobacteria with and without methyl bromide fumigation. Plant Dis. 84: 1073-1075 https://doi.org/10.1094/PDIS.2000.84.10.1073
  24. Reva, O. N., C. Dixelius, J. Meijer, and F. J. Priest. 2004. Taxonomic characterization and plant colonization abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiol. Ecol. 48: 2249-2259
  25. Sadhale, N. 1996. Surapala's Vrikshayurveda (translated by N Sadhale). Asian Agri-History Foundation, Secunderabad, India
  26. Setlow, P. 1995. Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu. Rev. Microbiol. 49: 29-54 https://doi.org/10.1146/annurev.mi.49.100195.000333
  27. Shoda, M. 2000. Bacterial control of plant diseases. J. Biosci. Bioeng. 89: 515-521 https://doi.org/10.1016/S1389-1723(00)80049-3
  28. Singh, H. B. and A. K. Handique. 1997. Antifungal activity of the essential oil of Hyptis suaveolens and its efficacy in biological control measures in combination with Trichoderma harzianum. J. Essent. Oil Res. 9: 683-687 https://doi.org/10.1080/10412905.1997.9700811
  29. Singh, A., S. Mehta, H. B. Singh, and C. S. Nautiyal. 2003. Biological control of collar rot disease of Betelvine (Piper betel L.) caused by Sclerotium rolfsii using rhizosphere competent Pseudomonas fluorescens NBRI-N6 and P. fluorescens NBRI-N. Curr. Microbiol. 47: 153-158 https://doi.org/10.1007/s00284-002-3938-8
  30. Turner, J. T. and P. A. Backman. 1991. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 75: 347-353 https://doi.org/10.1094/PD-75-0347
  31. Viswanathan, R. and S. Samiyappan. 2002. Induced systemic resistance by fluorescent Pseudomonads against red rot disease of sugarcane caused by Colletotrichum falcatum. Crop Protect. 21: 1-10 https://doi.org/10.1016/S0261-2194(01)00050-3
  32. Wang, S. L., I. L. Shih, T. W. Liang, and C. H. Wang. 2002. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. J. Agric. Food Chem. 50: 2241-2248 https://doi.org/10.1021/jf010885d
  33. Wipat, A. and C. R. Harwood. 1999. The Bacillus subtilis genome sequence: The molecular blueprint of a soil bacterium. FEMS Microbiol. Ecol. 28: 1-9 https://doi.org/10.1111/j.1574-6941.1999.tb00555.x
  34. Yadav, D. V. 1995. Recycling of crop, animal, human and industrial wastes in agriculture, pp. 91-108. In: Tandon, H. L. S. (ed.), Recycling of Sugar Factory Press Mud in Agriculture. Fertilizer Development and Consultation Organization, New Delhi, India