Browse > Article
http://dx.doi.org/10.4014/jmb.1910.10034

A Sporolactobacillus-, Clostridium-, and Paenibacillus- Dominant Microbial Consortium Improved Anaerobic RDX Detoxification by Starch Addition  

Khan, Muhammad Imran (Department of Civil and Environmental Engineering, College of Engineering, Yonsei University)
Yoo, Keunje (Department of Civil and Environmental Engineering, College of Engineering, Yonsei University)
Kim, Seonghoon (Department of Civil and Environmental Engineering, College of Engineering, Yonsei University)
Cheema, Sardar Alam (Department of Agronomy, University of Agriculture)
Bashir, Safdar (Institute of Soil and Environmental Sciences, University of Agriculture)
Park, Joonhong (Department of Civil and Environmental Engineering, College of Engineering, Yonsei University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.6, 2020 , pp. 839-847 More about this Journal
Abstract
In the present study, an anaerobic microbial consortium for the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was selectively enriched with the co-addition of RDX and starch under nitrogen-deficient conditions. Microbial growth and anaerobic RDX biodegradation were effectively enhanced by the co-addition of RDX and starch, which resulted in increased RDX biotransformation to nitroso derivatives at a greater specific degradation rate than those for previously reported anaerobic RDX-degrading bacteria (isolates). The accumulation of the most toxic RDX degradation intermediate (MNX [hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine]) was significantly reduced by starch addition, suggesting improved RDX detoxification by the co-addition of RDX and starch. The subsequent MiSeq sequencing that targeted the bacterial 16S rRNA gene revealed that the Sporolactobacillus, Clostridium, and Paenibacillus populations were involved in the enhanced anaerobic RDX degradation. These results suggest that these three bacterial populations are important for anaerobic RDX degradation and detoxification. The findings from this work imply that the Sporolactobacillus, Clostridium, and Paenibacillus dominant microbial consortium may be valuable for the development of bioremediation resources for RDX-contaminated environments.
Keywords
Bioremediation; explosives; MiSeq; starch; Sporlactobacillus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Boopathy R, Kulpa CF, Manning J. 1998. Anaerobic biodegradation of explosives and related compounds by sulfate-reducing and methanogenic bacteria: a review. Bioresour. Technol. 63: 81-89.   DOI
2 Speitel GE, Engels TL, McKinney DC. 2001. Biodegradation of RDX in unsaturated soil. Bioremed. J. 5: 1-11.   DOI
3 Morley MC, Shammas SN, Speitel GE. 2002. Biodegradation of RDX and HMX mixtures: Batch screening experiments and sequencing batch reactors. Environ. Eng. Sci. 19: 237-250.   DOI
4 Zhao JS, Halasz A, Paquet L, Beaulieu C, Hawari J. 2002. Biodegradation of hexahydro-1,3,5-trinitro- 1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro- 1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl. Environ. Microbiol. 68: 5336-5341.   DOI
5 Adrian NR, Arnett CM. 2007. Anaerobic biotransformation of explosives in aquifer slurries amended with ethanol and propylene glycol. Chemosphere 66: 1849-1856.   DOI
6 Arnett C, Adrian NR. 2009. Cosubstrate independent mineralization of hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX) by a Desulfovibrio species under anaerobic conditions. Biodegradation 20: 15-26.   DOI
7 Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J. 2004. Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem. Biophys. Res. Commun. 316: 816-821.   DOI
8 Waisner S, Hansen L, Fredrickson H, Nestler C, Zappi M, Banerji S, et al. 2002. Biodegradation of RDX within soil-water slurries using a combination of differing redox incubation conditions. J. Hazard. Mater. 95: 91-106.   DOI
9 McCormick NG, Cornell JH, Kaplan AM. 1981. Biodegradation of hexahydro- 1,3,5-trinitro- 1,3,5-triazine. Appl. Environ. Microbial. 42: 817-823.   DOI
10 Sagi-Ben Moshe S, Dahan O, Weisbrod N, Bernstein A, Adar E, Ronen Z. 2012. Biodegradation of explosives mixture in soil under different water-content conditions. J. Hazard. Mater. 203-204: 333-340.   DOI
11 George D, Mallery P. 2009. SPSS for Windows Step by Step: A Simple Guide and Reference, 16.0 Update, 9th Ed. Allyn & Bacon, Boston, England.
12 Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41: e1.   DOI
13 Yoo K, Yoo H, Lee JM, Shukla SK, Park J. 2018. Classification and regression tree approach for prediction of potential hazards of urban airborne bacteria during Asian dust events. Sci. Rep. 8: 11823.   DOI
14 Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79: 5112-5120.   DOI
15 Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797.   DOI
16 Zhao JS, Paquet L, Halasz A, Hawari J. 2003. Metabolism of hexahydro-1,3,5-trinitro-1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed by denitration in Clostridium bifermentans HAW-1. Appl. Microbiol. Biotechnol. 63: 187-193.   DOI
17 Zhao JS, Manno D, Hawari J. 2008. Regulation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) metabolism in Shewanella halifaxensis HAW-EB4 by terminal electron acceptor and involvement of c-type cytochrome. Microbiology 154: 1026-1037.   DOI
18 Adrian NR, Arnett CM. 2004. Anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture. Curr. Microbiol. 48: 332-340.   DOI
19 Smith RW, Vlahos P, Tobias C, Ballentine M, Ariyarathna T, Cooper C. 2013. Removal rates of dissolved munitions compounds in seawater. Chemosphere 92: 898-904.   DOI
20 Andeer P, Stahl DA, Lillis L, Strand SE. 2013. Identification of microbial populations assimilating nitrogen from RDX in munitions contaminated military training range soils by high sensitivity stable isotope probing. Environ. Sci. Technol. 47: 10356-10363.   DOI
21 Meyer SA, Marchand AJ, Hight JL, Roberts GH, Escalon LB, Inouye LS, et al. 2005. Up-and-down procedure (UDP) determinations of acute oral toxicity of nitroso degradation products of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). J. Appl. Toxicol. 25: 427-434.   DOI
22 Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, et al. 2000. Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl. Environ. Microbiol. 66: 2652-2657.   DOI
23 Huang K, Ni J, Xu K, Tang H, Tao F, Xu P. 2014. Genome sequence of Sporolactobacillus terrae DSM 11697, the type strain of the species. Genome Announc. 2: e00465-14.
24 Wang H, Wang L, Ju J, Yu B, Ma Y. 2013. Genome sequence of Sporolactobacillus laevolacticus DSM442, an efficient polymer-grade dlactate producer from agricultural waste cottonseed as a nitrogen source. Genome Announc. 1: e01100-13.
25 Jayamani I, Cupples AM. 2015. Stable isotope probing reveals the importance of Comamonas and Pseudomonadaceae in RDX degradation in samples from a Navy detonation site. Environ. Sci. Pollut. Res. 22: 10340-10350.   DOI
26 Kitts CL, Green CE, Otley RA, Alvarez MA, Unkefer PJ. 2000. Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6,-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Can. J. Microbiol. 46: 278-282.   DOI
27 Perreault NN, Crocker FH, Indest KJ, Hawari J. 2012. Involvement of cytochrome c CymA in the anaerobic metabolism of RDX by Shewanella oneidensis MR-1. Can. J. Microbiol. 58: 124-131.   DOI
28 Andeer P, Stahl DA, Bruce NC, Strand SE. 2009. Lateral transfer of genes for hexahydro-1,3,5-trinitro -1,3,5-triazine (RDX) degradation. Appl. Environ. Microbiol. 75: 3258-3262.   DOI
29 Arbeli Z, Garcia-Bonilla E, Pardo C, Hidalgo K, Velasquez T, Pena L, et al. 2016. Persistence of pentolite (PETN and TNT) in soil microcosms and microbial enrichment cultures. Environ. Sci. Pollut. Res. 23: 9144-9155.   DOI
30 Payne ZM, Lamichhane KM, Babcock Jr RW, Turnbull SJ. 2013. Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii. Environ. Sci. Process Impacts 15: 2023-2029.   DOI
31 Wilson FP, Cupples AM. 2016. Microbial community characterization and functional gene quantification in RDX-degrading microcosms derived from sediment and groundwater at two naval sites. Appl. Microbiol. Biotechnol. 100: 7297-7309.   DOI
32 Halasz A, Hawari J. 2011. Degradation Routes of RDX in various redox systems. ACS Symp. Ser. 1071: 441-462.
33 ATSDR. 2010. Agency for Toxic Substances and Disease Registry. Available from http://www.atsdr.cdc.gov. Accessed Oct.12, 2019.
34 Eaton HL, De Lorme M, Chaney RL, Craig AM. 2011. Ovine ruminal microbes are capable of biotransforming hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Microb. Ecol. 62: 274-286.   DOI
35 Schoenmuth B, Mueller JO, Scharnhorst T, Schenke D, Buttner C, Pestemer W. 2014. Elevated root retention of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in coniferous trees. Environ. Sci. Pollut. Res. 21: 3733-3743.   DOI
36 Khan MI, Lee J, Park J. 2012. Microbial degradation and toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine. J. Microbiol. Biotechnol. 22: 1311-1323.   DOI
37 Yu B, Su F, Wang L, Xu K, Zhao B, Xu P. 2011. Draft genome sequence of Sporolactobacillus inulinus strain CASD, an efficient D-lactic acid-producing bacterium with high-concentration lactate tolerance capability. J. Bacteriol. 193: 5864-5865.   DOI
38 Adrian NR, Arnett CM. 2006. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) serves as a carbon and energy source for a mixed culture under anaerobic conditions. Curr. Microbiol. 53: 129-134.   DOI
39 Iida K, Ueda Y, Kawamura Y, Ezaki T, Takade A, Yoshida S, et al. 2005. Paenibacillus motobuensis sp. nov., isolated from a composting machine utilizing soil from Motobu-town, Okinawa, Japan. Int. J. Syst. Evol. Microbiol. 55: 1811-1816.   DOI
40 Song L, Dong X. 2008. Clostridium amylolyticum sp. nov., isolated from H2-producing UASB granules. Int. J. Syst. Evol. Microbiol. 58: 2132-2135.   DOI
41 Bhushan B, Halasz A, Spain JC, Hawari J. 2002. Diaphorase catalyzed biotransformation of RDX via N-denitration mechanism. Biochem. Biophys. Res. Commun. 296: 779-784.   DOI
42 Kwon MJ, Wei N, Millerick K, Popovic J, Finneran K. 2014. Clostridium geopurificans strain MJ1 sp. nov., a strictly anaerobic bacterium that grows via fermentation and reduces the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Curr. Microbiol. 68: 743-750.   DOI
43 Li RW, Giarrizzo JG, Wu S, Li W, Duringer JM, Craig AM. 2014. Metagenomic insights into the RDX-degrading potential of the ovine rumen microbiome. PLoS One 9: e110505.   DOI
44 Bhushan B, Halasz A, Hawari J. 2005. Biotransformation of CL-20 by a dehydrogenase enzyme from Clostridium sp. EDB2. Appl. Microbiol. Biotechnol. 69: 448-455.   DOI
45 Zhao JS, Manno D, Hawari J. 2007. Abundance and diversity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) - metabolizing bacteria in UXO-contaminated marine sediments. FEMS Microbiol. Ecol. 59: 706-717.   DOI
46 Nejidat A, Kafka L, Tekoah Y, Ronen Z. 2008. Effect of organic and inorganic nitrogenous compounds on RDX degradation and cytochrome P-450 expression in Rhodococcus strain YH1. Biodegradation 19: 313-320.   DOI
47 Coleman NV, Nelson DR, Duxbury T. 1998. Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22. Soil Biol. Biochem. 30: 1159-1167.   DOI
48 Fuller ME, McClay K., Higham M, Hatzinger PB, Steffan RJ. 2010. Hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX) bioremediation in groundwater: Are known RDX-degrading bacteria the dominant players? Bioremediat. J. 14: 121-134.   DOI
49 Seth-Smith HM, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, et al. 2002. Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl. Environ. Microbiol. 68: 4764-4771.   DOI
50 Thompson KT, Crocker FH, Fredrickson HL. 2005. Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl. Environ. Microbiol. 71: 8265-8272.   DOI
51 Crocker FH, Indest KJ, Jung CM, Hancock DE, Fuller ME, Hatzinger PB, et al. 2015. Evaluation of microbial transport during aerobic bioaugmentation of an RDX-contaminated aquifer. Biodegradation 26: 443-451.   DOI
52 Fuller ME, Hatzinger PB, Condee CW, Andaya C, Vainberg S, Michalsen MM, et al. 2015. Laboratory evaluation of bioaugmentation for aerobic treatment of RDX in groundwater. Biodegradation 26: 77-89.   DOI
53 Fuller ME, Hatzinger PB, Condee CW, Andaya C, Rezes R, Michalsen MM, et al. 2017. RDX degradation in bioaugmented model aquifer columns under aerobic and low oxygen conditions. Appl. Microbiol. Biotechnol. 101: 5557-5567.   DOI
54 Lee BU, Choi MS, Kim DM, Oh KH. 2017. Genome Shuffling of Stenotrophomonas maltophilia OK-5 for improving the degradation of explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Curr. Microbiol. 74: 268-276.   DOI
55 Liu YJ, Liu SJ, Drake HL, Horn MA. 2013. Consumers of 4-chloro-2-methylphenoxyacetic acid from agricultural soil and drilosphere harbor cadA, r/sdpA, and tfdA-like gene encoding oxygenases. FEMS Microbiol. Ecol. 86: 114-129.   DOI
56 Eaton HL, Duringer JM, Murty LD, Craig AM. 2013. Anaerobic bioremediation of RDX by ovine whole rumen fluid and pure culture isolates. Appl. Microbiol. Biotechnol. 97: 3699-3710.   DOI
57 Fuller M, Steffan RJ. 2009. Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB. Appl. Microbiol. Biotechnol. 84: 535-544.   DOI
58 Semenov AM, van Bruggen AHC, Zelenev VV. 1999. Moving waves of bacterial populations and total organic carbon along roots of wheat. Microb. Ecol. 37: 116-128.   DOI
59 Lamichhane KM, Babcock Jr RW, Turnbull SJ, Schenck S. 2012. Molasses enhanced phyto and bioremediation treatability study of explosives contaminated Hawaiian soils. J. Hazard. Mater. 243: 334-339.   DOI
60 Khan MI, Yang J, Yoo B, Park J. 2015. Improved RDX detoxification with starch addition using a novel nitrogen-fixing aerobic microbial consortium from soil contaminated with explosives. J. Hazard. Mater. 287: 243-251.   DOI
61 Kwon MJ, Finneran KT. 2006. Microbially mediated biodegradation of hexahydro-1,3,5-trinitro-1,3,5- triazine by extracellular electron shuttling compounds. Appl. Environ. Microbiol. 72: 5933-5941.   DOI
62 Ariyarathna T, Vlahos P, Smith RW, Fallis S, Groshens T, Tobias C. 2017. Biodegradation and mineralization of isotopically labeled TNT and RDX in anaerobic marine sediments. Environ. Toxicol. Chem. 36: 1170-1180.   DOI
63 EPA, U.S. 1994. Nitroaromatics and nitramines by HPLC. Second update SW-846 method 8330. Office of Solid Waste and Emergency Response, Washington, D.C., USA.