Browse > Article
http://dx.doi.org/10.4014/mbl.1908.08004

Characterization of a Nitrous Oxide-reducing Bacterial Consortium  

Park, Hyung-Joo (Department of Environmental Science and Engineering, Ewha Womans University)
Kwon, Ji-Hyeon (Department of Environmental Science and Engineering, Ewha Womans University)
Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Microbiology and Biotechnology Letters / v.47, no.4, 2019 , pp. 630-638 More about this Journal
Abstract
Nitrous oxide (N2O) is a greenhouse gas with a global warming potential 310 times higher than that of carbon dioxide. In this study, an N2O-reducing consortium was obtained by enrichment culture using advanced treatment sludge as the inoculum. The dominant bacteria in the consortium were Sulfurovum (17.95%), Geobacter (14.63%), Rectinema (11.45%), and Chlorobium (8.24%). The consortium displayed optimal N2O reducing activity when acetate was supplied as the carbon source at a carbon/nitrogen ratio (mol·mol-1) of 6.3. The N2O reduction rate increased with increasing N2O concentration at less than 3,000 ppm. Kinetic analysis revealed that the maximum N2O reduction rate of the consortium was 163.9 ㎍-N·g-VSS-1·h-1. Genes present in the consortium included nosZ (reduction of nitrous oxide to N2), narG (reduction of nitrate to nitrite), nirK (reduction of nitrite to nitric oxide), and norB (reduction of nitric oxide to nitrous oxide). These results indicate that the N2O-reducing consortium is a promising bioresource that can be used in denitrification and N2O mitigation.
Keywords
Nitrous oxide; denitrification; enrichment culture; consortium; functional gene; greenhouse gas;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Caranto JD, Lancaster KM. 2017. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proc. Natl. Acad. Sci. USA 115: 8217-8222.   DOI
2 Terada A, Sugawara S, Hojo K, Takeuchi Y, Riya S, Harper WF, et al. 2017. Hybrid nitrous oxide production from a partial nitrifying bioreactor: hydroxylamine interactions with nitrite. Environ. Sci. Technol. 51: 2748-2756.   DOI
3 Mokhayeri Y, Riffat R, Murthy S, Bailey W, Takacs I, Bott C. 2009. Balancing yield, kinetics and cost for three external carbon sources used for suspended growth post-denitrification. Water Sci. Technol. 60: 2485-2491.   DOI
4 Hallin S, Pell M. 1998. Metabolic properties of denitrifying bacteria adapting to methanol and ethanol in activated sludge. Water Res. 32: 13-18.   DOI
5 Purtschert I, Siegrist WGH. 1996. Enhanced denitrification with methanol at WWTP Zurich-Werdholzli. Water Sci. Technol. 33: 117-126.   DOI
6 Aravinthan.V, Mino T, Takizawa S, Satoh H, Matsuo T. 2001. Sludge hydrolysate as a carbon source for denitrification. Water Sci. Technol. 43: 191-199.
7 Tam NFY, Leung GLW, Wong YS. 1994. The effects of external carbon loading on nitrogen removal in sequencing batch reactors. Water Sci. Technol. 30: 73-81.
8 Aesoy A, Odegaard H, Bach K, Pujol R, Hamon M. 1998. Denitrification in a packed bed biofilm reactor (biofor)-experiments with different carbon sources. Water Res. 32: 1463-1470.   DOI
9 Ribera-Guardia A, Kassotaki E, Gutierrez O, Pijuan M. 2014. Effect of carbon source and competition for electrons on nitrous oxide reduction in a mixed denitrifying microbial community. Process. Biochem. 49: 2228-2234.   DOI
10 Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. 2013. The peokaryotes, pp. 1-635. 4th Ed. Springer, New York, Berlin Heidelberg.
11 Gottschalk G. 1986. Bacterial metabolism, pp. 1-341. 2nd Ed. Springer, New York, Berlin Heidelberg.
12 Dorokhov YL, Shindyapina AV, Sheshukova EV, Komarova TV. 2015. Metabolic methanol: molecular pathways and physiological roles. Physiol. Rev. 95: 603-644.   DOI
13 Rodriguez-CaballeroaI A, Aymericha Ricardo Marquesab I, Pochc M, Pijuan M. 2015. Minimizing $N_2O$ emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor. Water Res. 71: 1-10.   DOI
14 Massara TM, Malamis S, Guisasola A, Baeza JA, Noutsopoulos C, Katsou E. 2017. A review on nitrous oxide ($N_2O$) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci. Total Environ. 596-597: 106-123.   DOI
15 Law Y, Ye L, Pan Y, Yuan Z. 2012. Nitrous oxide emissions from wastewater treatment processes. Philos. Trans. R. Soc. Lond B Biol. Sci. 367: 1265-1277.   DOI
16 Lee K. 2010. Biological removal of nitrogen oxides from combustion flue gases. Appl. Chem. Eng. 21: 243-251.
17 Kampschreur MJ, Temmink H, Kleerebezema R, Jetten MSM, Loosdrechta MCM. 2009. Nitrous oxide emission during wastewater treatment. Water Res. 43: 4093-4103.   DOI
18 Domingo-Félez C, Mutlu AG, Jensen MM, Smets BF. 2014. Aeration strategies to mitigate nitrous oxide emissions from singlestage nitritation/anammox reactors. Environ. Sci. Technol. 48: 8679-8687.   DOI
19 Song K, Suenaga T, Harper WF, Hori T, Riya S, Hosomi M, et al. 2015. Effects of aeration and internal recycle flow on nitrous oxide emissions from a modified Ludzak-Ettinger process fed with glycerol. Environ. Sci. Pollut. Res. 22: 19562-19570.   DOI
20 Kinh CT, Suenaga T, Hori T, Riya S, Hosomi M, Smets BF, et al. 2017. Counter-diffusion biofilms have lower $N_2O$ emissions than co-diffusion biofilms during simultaneous nitrification and denitrification: Insights from depth-profile analysis. Water Res. 124: 363-371.   DOI
21 Bru D, Sarr A, Philippot L. 2007. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl. Environ. Microbiol. 73: 5971-5974.   DOI
22 Paul JW, Beauchamp EG, Trevors JT. 1989. Acetate, propionate, butyrate, glucose, and sucrose as carbon sources for denitrifying bacteria in soil. Can. J. Microbiol. 35: 754-759.   DOI
23 Yoon H, Song MJ, Yoon S. 2017. Design and feasibility analysis of a self-sustaining biofiltration system for removal of low concentration $N_2O$ emitted from wastewater treatment plants. Environ. Sci. Technol. 51: 10736-10745.   DOI
24 Wakako IO, Miyahara M, Kim SW, Yamada T, Matsuoka M, Watanabe A, et al. 2013. Bioaugmentation of a wastewater bioreactor system with the nitrous oxide-reducing denitrifier Pseudomonas stutzeri strain TR2. J. Biosci. Bioeng. 115: 37-42.   DOI
25 Yokoyama K, Yumura M, Honda T, Ajitomi E. 2016. Characterization of denitrification and net $N_2O$-reduction properties of novel aerobically $N_2O$-reducing bacteria. Soil. Sci. Plant Nutr. 62: 230-239.   DOI
26 Su Q, Ma C, Domingo-Félez C, Kiil AS, Thamdrup B, Jensen MM, et al. 2017. Low nitrous oxide production through nitrifierdenitrification in intermittent-feed high-rate nitritation reactors. Water Res. 123: 429-438.   DOI
27 Kim TG, Yi T, Lee EH, Ryu HW, Cho KS. 2012. Characterization of a methane-oxidizing biofilm using microarray, and confocal microscopy with image and geostatic analyses. Appl. Microbiol. Biotechnol. 95: 1051-1059.   DOI
28 Schreiber F, Wunderlin P, Udert KM, Wells GF. 2012. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies. Front. Microbiol. 3: 372.   DOI
29 Song K, Suenaga T, Hamamoto A, Satou K, Riya S, Hosomi M. 2014. Abundance, transcription levels and phylogeny of bacteria capable of nitrous oxide reduction in a municipal wastewater treatment plant. J. Biosci. Bioeng. 118: 289-297.   DOI
30 Casciotti KL, Ward BB. 2005. Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammoniaoxidizing bacteria. FEMS Microbiol. Ecol. 52: 197-205.   DOI
31 Daniel CSLDL. 2003. Nitrite as an energy-conserving electron sink for the acetogenic bacterium Moorella thermoacetica. Curr. Microbiol. 46: 0329-0333.   DOI
32 Giovannelli D, Chung M, Staley J, Starovoytov V, Bris NL, Vetriani C. 2016. Sulfurovum riftiae sp. nov., a mesophilic, thiosulfateoxidizing, nitrate-reducing chemolithoautotrophic epsilonproteobacterium isolated from the tube of the deep-sea hydrothermal vent polychaete Riftia pachyptila. Int. J. Syst. Evol. Microbiol. 66: 2697-2701.   DOI
33 Regan HKM. 2017. No facultative nitrate reduction by electroderespiring Geobacter metallireducens biofilms as a competitive reaction to electrode reduction in a bioelectrochemical system title. Am. Chem. Soc. 49: 3195-3202.
34 Wahlund MTM. 1993. Nitrogen fixation by the thermophilic green sulfur bacterium Chlorobium tepidum. J. Bacteriol. 175: 474-478.   DOI
35 Okereke GU. 1993. Growth yield of denitrifiers using nitrous oxide as a terminal electron acceptor. J. Microbiol. Biotechnol. 9: 59-62.   DOI
36 Luo YH, Chen R, Wen LL, Meng F, Zhang Y, Lai CY, et al. 2015. Complete perchlorate reduction using methane as the sole electron donor and carbon source. Environ. Sci. Technol. 49: 2341-2349.   DOI
37 Ginige MP, Bowyer JC, Foley L, Keller J, Yuan Z. 2009. A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones. Biodegradation 20: 221-234.   DOI
38 Baytshtok V, Lu H, Park H, Kim S, Yu R, Chandran K. 2009. Impact of varying electron donors on the molecular microbial ecology and biokinetics of methylotrophic denitrifying bacteria. Biotechnol. Bioeng. 102: 1527-1536.   DOI
39 Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous oxide ($N_2O$): the dominant ozone-depleting substance emitted in the 21st century. Science 326: 123-125.   DOI
40 IPCC. 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 465-570. Cambridge Univ Press.