Browse > Article

Synergistic Utilization of Dichloroethylene as Sole Carbon Source by Bacterial Consortia Isolated from Contaminated Sites in Africa  

Olaniran, Ademola O. (Department of Microbiology, Faculty of Science and Agriculture, University of KwaZulu-Natal(Westville Campus))
Mfumo, Nokukhanya H. (Department of Microbiology, Faculty of Science and Agriculture, University of KwaZulu-Natal(Westville Campus))
Pillay, Dorsamy (Department of Microbiology, Faculty of Science and Agriculture, University of KwaZulu-Natal(Westville Campus))
Pillay, Balakrishna (Department of Microbiology, Faculty of Science and Agriculture, University of KwaZulu-Natal(Westville Campus))
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.3, 2006 , pp. 205-210 More about this Journal
Abstract
The widespread use and distribution of chloroethylene organic compounds is of serious concern owing to their carcinogenicity and toxicity to humans and wildlife. In an effort to develop active bacterial consortia that could be useful for bioremediation of chloroethylene-contaminated sites in Africa, 16 combinations of 5 dichloroethylene (DCE)-utilizing bacteria, isolated from South Africa and Nigeria, were assessed for their ability to degrade cis- and trans- DCEs as the sole carbon source. Three combinations of these isolates were able to remove up to 72% of the compounds within 7 days. Specific growth rate constants of the bacterial consortia ranged between 0.465 and $0.716\;d^{-1}$ while the degradation rate constants ranged between 0.184 and $0.205\;d^{-1}$ with $86.36{\sim}93.53\;and\;87.47{\sim}97.12%$ of the stoichiometric-expected chloride released during growth of the bacterial consortia in cis- and trans-DCE, respectively. Succession studies of the individual isolates present in the consortium revealed that the biodegradation process was initially dominated by Achromobacter xylosoxidans and subsequently by Acinetobacter sp. and Bacillus sp., respectively. The results of this study suggest that consortia of bacteria are more efficient than monocultures in the aerobic biodegradation of DCEs, degrading the compounds to levels that are up to 60% below the maximum allowable limits in drinking water.
Keywords
aerobic; biodegradation; consortium; dichloroethylene; synergism;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Fetzner, S. (1998) Bacterial dehalogenation. Appl. Microbiol. Biotechnol. 50: 633-657   DOI
2 Richard, A. M. and E. S. Hunter, 3rd. (1996) Quantitative structure-activity relationships for the developmental toxicity of haloacetic acids in mammalian whole embryo culture. Teratology 53: 352-360   DOI   ScienceOn
3 Akers, K. S., G. D. Sinks, and T. W. Schultz (1999) Structure-toxicity relationships for selected halogenated aliphatic chemicals. Environ. Toxicol. Pharmacol. 7: 33-39   DOI   ScienceOn
4 Milde, G., M. Nerger, and R. Mergler (1998) Biological degradation of volatile chlorinated hydrocarbons in groundwater. Water Sci. Technol. 20: 67-73
5 Rosner, B. M., P. L. McCarty, and A. M. Sporemann (1997) In vitro studies on reductive vinyl chloride dehalogenation by an anaerobic mixed culture. Appl. Environ. Microbiol. 63: 4139-4144
6 Klier, N. J., R. J. West, and P. A. Donberg (1999) Aerobic biodegradation of dichloroethylenes in surface and subsurface soils. Chemosphere 38: 1175-1188   DOI   ScienceOn
7 Bouwer, E. J. (1994) Bioremediation of chlorinated solvents using alternate electron acceptors. pp. 149-175. In: R. D. Norris, R. E. Hinchee, R. Brown, P. L. McCarty, L. Semprini, J. T. Wilson, D. H. Kampbell, M. Reinhard, E. J. Bouwer, R. C. Borden, T. M. Vogel, J. M. Thomas, and C. H. Ward (eds.). Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA
8 Koziollek, P., D. Bryniok, and H. J. Knackmuss (1999) Ethene as an auxiliary substrate for the cooxidation of cisdichloroethene and vinyl chloride. Arch. Microbiol. 172: 240-246   DOI
9 Flynn, S. J., F. E. Loffler, and J. M. Tiedje (2000) Microbial community changes associated with a shift from reductive dechlorination of PCE to reductive dechlorination of cis-DCE and VC. Environ. Sci. Technol. 34: 1056-1061   DOI   ScienceOn
10 Sutherland, T. D., I. Horne, M. J. Lacey, R. L. Harcourt, R. J. Russell, and J. G. Oakeshott (2000) Enrichment of an endosulfan-degrading mixed bacterial culture. Appl. Environ. Microbiol. 66: 2822-2828   DOI
11 LaGrega, M. D., P. L. Buckingham, and J. C. Evans (1994) Growth kinetics. pp. 581. In: B. J. Clark and J. M. Morris (eds.). Hazardous Waste Management. McGraw- Hill, Inc., New York, NY, USA
12 DiStefano, T. D., J. M. Gossett, and S. H. Zinder (1992) Hydrogen as an electron donor for the dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl. Environ. Microbiol. 58: 3622-3629
13 McCarty, P. L. and L. Semprini (1994) Groundwater treatment for chlorinated solvents. pp. 87-116. In: R. D. Norris, R. E. Hinchee, R. Brown, P. L. McCarty, L. Semprini, J. T. Wilson, D. H. Kampbell, M. Reinhard, E. J. Bouwer, R. C. Borden, T. M. Vogel, J. M. Thomas, and C. H. Ward (eds.). Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA
14 Katsivela, E., D. Bonse, A. Krueger, C. Stroempl, A. Livingstone, and R. M. Wittich (1999) An extractive membrane biofilm reactor for degradation of 1,3-dichloropropene in industrial waste water. Appl. Microbiol. Biotechnol. 52: 853-862   DOI
15 Brown-Woodman, P. D. C., L. C. Hayes, F. Huq, C. Herlihy, K. Picker, and W. S. Webster (1998) In vitro assessment of the effect of halogenated hydrocarbons: chloroform, dichloromethane, and dibromoethane on embryonic development of rat. Teratology 57: 321-333   DOI   ScienceOn
16 Squillace, P. J., M. J. Moran, W. W. Lapham, C. V. Price, R. M. Clawges, and J. S. Zogorski (1999) Volatile organic compounds in untreated ambient groundwater of the United States, 1985-1995. Environ. Sci. Technol. 33: 4176-4187   DOI   ScienceOn
17 Van Hylckama Vlieg, J. E. T., J. Kingma, A. J. van den Wijngaard, and D. B. Janssen (1998) A glutathione Stransferase with activity towards cis-dichloroepoxyethane is involved in isoprene utilization by Rhodococcus sp. strain AD45. Appl. Environ. Microbiol. 64: 2800-2805
18 Olaniran, A. O., A. I. Okoh, S. Ajisebutu, P. Golyshin, and G. O. Babalola (2002) The aerobic dechlorination activities of two bacterial species isolated from a refuse dumpsite in Nigeria. Int. Microbiol. 5: 21-24   DOI   ScienceOn
19 Bergmann, J. G. and J. Sanik (1957) Determination of trace amounts of chlorine in naphtha. Anal. Chem. 29: 241-243   DOI
20 Gribble, G. W. (1994) The natural production of chlorinated compounds. Environ. Sci. Technol. 28: 310A-319A   DOI
21 Seeley, H. W. and P. J. Vandemark (1981) Microbes in Action. A Laboratory Manual of Microbiology. 3rd ed., WH Freeman and Company, New York, NY, USA
22 Bradley, P. M. and F. H. Chapelle (2000) Aerobic microbial mineralization of dichloroethene as sole carbon source. Environ. Sci. Technol. 34: 221-223   DOI   ScienceOn
23 Loffler, F. E., K. M. Ritalahti, and J. M. Tiedje (1997) Dechlorination of chloroethenes is inhibited by 2-bromoethanesulfonate in the absence of methanogens. Appl. Environ. Microbiol. 63: 4982-4985
24 Coleman, N. V., T. E. Mattes, J. M. Gossett, and J. C. Spain (2002) Biodegradation of cis-dichloroethene as the sole carbon source by a $\beta$-proteobacterium. Appl. Environ. Microbiol. 68: 2726-2730   DOI
25 Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402   DOI
26 Ensign, S. A., M. R. Hyman, and D. J. Arp (1992) Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain. Appl. Environ. Microbiol. 58: 3038-3046
27 Alvey, S. and D. E. Crowley (1996) Survival and activity of an atrazine-mineralizing bacterial consortium in rhizosphere soil. Environ. Sci. Technol. 30: 1596-1603   DOI   ScienceOn
28 Gribble, G. W. (1996) Naturally occurring organohalogen compounds: a comprehensive survey. Prog. Org. Nat. Prod. 68: 1-498
29 Vogel, T. M., C. S. Criddle, and P. L. McCarty (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21: 722-736   DOI   ScienceOn
30 Tandoi, V., T. D. DiStefano, P. A. Bowser, J. M. Gossett, and S. H. Zinder (1994) Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a highrate anaerobic enrichment culture. Environ. Sci. Technol. 28: 973-979   DOI   ScienceOn
31 Ralebits, T. K., E. Senior, and H. W. van Verseveld (2002) Microbial aspects of atrazine degradation in natural environments. Biodegradation 13: 11-19   DOI   ScienceOn
32 Dolfing, J., A. J. van den Wijngaard, and D. B. Janssen (1993) Microbiological aspects of the removal of chlorinated hydrocarbons from air. Biodegradation 4: 261-282   DOI
33 Olaniran, A. O., D. Pillay, and B. Pillay (2004) Aerobic dechlorination of cis- and trans-dichloroethenes by some indigenous bacteria isolated from contaminated sites in Africa. J. Environ. Sci. 16: 968-972
34 Maymo-Gatelle, X., V. Tandoi, J. M. Gossett, and S. H. Zinder (1995) Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethane in the absence of methanogenesis and acetogenesis. Appl. Environ. Microbiol. 61: 3928-3933
35 De Bruin, W. P., M. J. J. Kotterman, M. A. Posthumus, G. Schraa, A. J. B. Zehnder (1992) Complete biological reductive transformation of tetrachloroethylene to ethane. Appl. Environ. Microbiol. 58: 1996-2000
36 Vogel, T. M. (1994) Natural bioremediation of chlorinated solvents. pp. 201-225. In: R. D. Norris, R. E. Hinchee, R. Brown, P. L. McCarty, L. Semprini, J. T. Wilson, D. H. Kampbell, M. Reinhard, E. J. Bouwer, R. C. Borden, T. M. Vogel, J. M. Thomas, and C. H. Ward (eds.). Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA
37 Marchesi, J. R., T. Sato, A. J. Weightman, T. A. Martin, J. C. Fry, S. J. Hiom, D. Dymock, and W. G. Wade (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64: 795-799
38 Alexander, M. and K. M. Snow (1989) Reactions and movements of organic chemicals in soils. pp. 243-269. In: B. L. Sawhney and K. Brown (eds.). Soil Science Society of America, Madison, WI, USA
39 Hileman, B. (1993) Concerns broaden over chlorine and chlorinated hydrocarbons. Chem. Eng. News 19: 11-20
40 Olaniran, A. O., D. Pillay, and B. Pillay (2004) Haloalkane and haloacid dehalogenases from aerobic bacterial isolates indigenous to contaminated sites in Africa demonstrate diverse substrate specificities. Chemosphere 55: 27-33   DOI   ScienceOn
41 Gerhardt, P., R. Murray, R. Costilow, E. Nester, W. Wood, N. Krieg, and G. B. Phillips (1991) Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC, USA
42 Sharma, P. K. and P. L. McCarty (1996) Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2- dichloroethene. Appl. Environ. Microbiol. 62: 761-765
43 Anzai, Y., H. Kim, J. Y. Park, H. Wakabayashi, and H. Oyaizu (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol. 50: 1563-1589   DOI
44 Park, H. S., S. J. Lim, Y. K. Chang, A. G. Livingstone, and H. S. Kim (1999) Degradation of chloronitrobenzenes by a coculture of Pseudomonas putida and a Rhodococcus sp. Appl. Environ. Microbiol. 65: 1083-1091
45 Hartmans, S., A. Kaptein, J. Tramper, and J. A. M. de Bont (1992) Characterization of a Mycobacterium sp. and a Xanthomonas sp. for the removal of vinyl chloride and 1,2-dichloroethane from waste gases. Appl. Microbiol. Biotechnol. 37: 796-801   DOI
46 Van Hylckama Vlieg, J. E. T., W. de Koning, and D. B. Janssen (1996) Transformation kinetics of chlorinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography. Appl. Environ. Microbiol. 62: 3304-3312