• Title/Summary/Keyword: back metal

Search Result 411, Processing Time 0.026 seconds

Comparison of Image Quality among Different Computed Tomography Algorithms for Metal Artifact Reduction (금속 인공물 감소를 위한 CT 알고리즘 적용에 따른 영상 화질 비교)

  • Gui-Chul Lee;Young-Joon Park;Joo-Wan Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.541-549
    • /
    • 2023
  • The aim of this study wasto conduct a quantitative analysis of CT image quality according to an algorithm designed to reduce metal artifacts induced by metal components. Ten baseline images were obtained with the standard filtered back-projection algorithm using spectral detector-based CT and CT ACR 464 phantom, and ten images were also obtained on the identical phantom with the standard filtered back-projection algorithm after inducing metal artifacts. After applying the to raw data from images with metal artifacts, ten additional images for each were obtained by applying the virtual monoenergetic algorithm. Regions of interest were set for polyethylene, bone, acrylic, air, and water located in the CT ACR 464 phantom module 1 to conduct compare the Hounsfield units for each algorithm. The algorithms were individually analyzed using root mean square error, mean absolute error, signal-to-noise ratio, peak signal-to-noise ratio, and structural similarity index to assess the overall image quality. When the Hounsfield units of each algorithm were compared, a significant difference was found between the images with different algorithms (p < .05), and large changes were observed in images using the virtual monoenergetic algorithm in all regions of interest except acrylic. Image quality analysis indices revealed that images with the metal artifact reduction algorithm had the highest resolution, but the structural similarity index was highest for images with the metal artifact reduction algorithm followed by an additional virtual monoenergetic algorithm. In terms of CT images, the metal artifact reduction algorithm was shown to be more effective than the monoenergetic algorithm at reducing metal artifacts, but to obtain quality CT images, it will be important to ascertain the advantages and differences in image qualities of the algorithms, and to apply them effectively.

Effective Process Parameters on Shape Dimensional Accuracy in Incremental Sheet Metal Forming (점진성형에서 형상 정밀도에 영향을 미치는 공정 변수)

  • Kang, Jae-Gwan;Jung, Jong-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.177-183
    • /
    • 2015
  • Incremental sheet metal forming is a manufacturing process to produce thin parts using sheet metals by a series of small incremental deformation. The process rarely needs dedicated dies and molds, thus, preparation time for the process is relatively short as to be compared to conventional metal forming. Spring back in sheet metal working is very common, which causes critical errors in dimensions. Incremental sheet metal forming is not fully investigated yet. Hence, incremental sheet metal forming frequently produces inaccurate parts. This paper proposes a method to minimize dimensional errors to improve shape accuracy of products manufactured by incremental forming. This study conducts experiments using an exclusive incremental forming machine and the material for these experiments are sheets of aluminum AL1015. This research defines a process parameter and selects a few factors for the experiments. The parameters employed in this paper are tool feed rate, tool diameter, step depth, material thickness, forming method, dies applied, and tool path method. In addition, their levels for each factor are determined. The plan of the experiments is designed using orthogonal array $L_8$ ($2^7$) which requires minimum number of experiments. Based on the measurements, dimensional errors are collected both on the tool contacted surfaces and on the non-contacted surfaces. The distances between the formed surfaces and the CAD models are scanned and recorded using a commercial software product. These collected data are statistically analyzed and ANOVAs (analysis of variances) are drawn up. From the ANOVAs, this paper concludes that the process parameters of tool diameter, forming depth, and forming method are the significant factors to reduce the errors on the tool contacted surface. On the other hand, the experimental factors of forming method and dies applied are the significant factors on the non-contacted surface. However, the negative forming method always produces better accuracy than the positive forming method.

Effect of various casting alloys and abutment composition on the marginal accuracy of bar-type retainer (합금의 종류와 지대주 성분이 바형 유지 장치의 변연 적합도에 미치는 영향)

  • Lee, Yun-Hui;Song, Young-Gyun;Lee, Joon-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.85-91
    • /
    • 2012
  • Purpose: The object of this study was to determine if the low-priced alloy and metal UCLA abutment could be available for manufacturing bar-retained framework of implant prosthesis. Materials and methods: Bar structure was classified into 4 groups, The specimen of group 1 and 2 were based on casting high noble metal alloys and noble metal alloys with gold UCLA abutment. The specimen of group 3 and 4 were based on casting noble metal alloys and base metal alloys with metal UCLA abutment. Cast bar structure was installed in an acrylic resin model and only the screw on the hexed abutment side was tightened to 20 Ncm. On the opposite side, vertical discrepancy was measured with stereo microscope from front, back, and lateral side of the implant-abutment interface. One-way ANOVA was performed to analyze the marginal fit discrepancy. Results: One-way ANOVA test showed significant differences among all groups ($P$<.05) except for Group 1 and 3. Among them, difference between Group 1 and 2 was noticeable. Measured vertical discrepancies were all below $70{\mu}m$ except to Group 2. Conclusion: Base metal alloy and metal UCLA abutment could be used as an alternative to high-priced gold alloy for implant bar-retained framework.

Back Surface Field Properties with Different Surface Conditions for Crystalline Silicon Solar Cells (후면 형상에 따른 결정질 실리콘 태양전지의 후면전계 형성 및 특성)

  • Kim, Hyun-Ho;Kim, Seong-Tak;Park, Sung-Eun;Song, Joo-Yong;Kim, Young-Do;Tark, Sung-Ju;Kwon, Soon-Woo;Yoon, Se-Wang;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.243-249
    • /
    • 2011
  • To reduce manufacturing costs of crystalline silicon solar cells, silicon wafers have become thinner. In relation to this, the properties of the aluminium-back surface field (Al-BSF) are considered an important factor in solar cell performance. Generally, screen-printing and a rapid thermal process (RTP) are utilized together to form the Al-BSF. This study evaluates Al-BSF formation on a (111) textured back surface compared with a (100) flat back surface with variation of ramp up rates from 18 to $89^{\circ}C$/s for the RTP annealing conditions. To make different back surface morphologies, one side texturing using a silicon nitride film and double side texturing were carried out. After aluminium screen-printing, Al-BSF formed according to the RTP annealing conditions. A metal etching process in hydrochloric acid solution was carried out to assess the quality of Al-BSF. Saturation currents were calculated by using quasi-steady-state photoconductance. The surface morphologies observed by scanning electron microscopy and a non-contacting optical profiler. Also, sheet resistances and bulk carrier concentration were measured by a 4-point probe and hall measurement system. From the results, a faster ramp up during Al-BSF formation yielded better quality than a slower ramp up process due to temperature uniformity of silicon and the aluminium surface. Also, in the Al-BSF formation process, the (111) textured back surface is significantly affected by the ramp up rates compared with the (100) flat back surface.

Chip Breaking Characteristics Depending on Equivalent Effective Rake Angle in Turning (외경선삭가공시 등가유효경사각에 따른 칩절단 특성)

  • Lee, Young-Moon;Chang, Seung-Il;Sun, Jeong-Woo;Yun, Jong-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.25-31
    • /
    • 2004
  • Machinability in metal cutting processes depends on cutting input conditions such as cutting velocity, feed rate, depth of cut, types of work material and tool shape factors. In this study, to assess chip breaking characteristics of a turning process, an equivalent oblique cutting system to this has been established. And the equivalent effective rake angle was determined using side rake angle, back rake angle and side cutting edge angle of the tool. A non-dimensional parameter, Chip breaking index(CB), was used to assess Chip breaking characteristics of chip in conjunction with the equivalent effective rake angle. In case of positive rake angles of the equivalent effective rake, the back rake angle has little effect on the chip breaking characteristics however, in case of negative ones, the side rake angle has some effect on Chip breaking characteristics.

  • PDF

A Study on the Exhaust Reduction of Diesel Particulates Using Ceramic Fiber Filters (세라믹 섬유필터를 이용한 디젤 입자상물질 배출저감에 관한 기초연구)

  • 주용남;홍민선;문수호;이동섭;임우택
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.297-306
    • /
    • 2003
  • Works were focused on back pressure characteristics of ceramic fiber filter on DPF (Diesel Particulate Filter) system and experiments were performed to select appropriate filter which can filter particulates. Filters were installed on metal -support tube which has openings for exhaust gas flow. Ceramic fiber filters with high specific surface area and adequate high temperature strength are commercially available for filtration of diesel particulates and in -situ hot regeneration. Thus, ceramic blanket and ceramic board which are used as insulating media were applied to filter and filtration apparatus was installed on exhaust gas line connected to 2.0 L diesel engine. Alternating filter structure to adapt DPF system, collection efficiency test of diesel particulates was measured. In case of ceramic blanket, pressure drop was low, caused by the destruction of soft structures. Also, particulate collection efficiency was decreased depending on loading time. In case of ceramic board, structure design was altered to reduce back pressure on DPF system. Structure design was altered to induce Z-flow by making 10 mm and 5 mm holes on the surface of media. Alteration of 5 mm hole showed that media have low back pressure but particulate collection efficiency was 77%, while 10 mm hole showed that of 90%.

A 2.4GHz Back-gate Tuned VCO with Digital/Analog Tuning Inputs (디지털/아날로그 입력을 통한 백게이트 튜닝 2.4 GHz VCO 설계)

  • Oh, Beom-Seok;Lee, Dae-Hee;Jung, Wung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.234-238
    • /
    • 2003
  • In this work, we have designed a fully integrated 2.4GHz LC-tuned voltage-controlled oscillator (VCO) with multiple tuning inputs for a $0.25-{\mu}m$ standard CMOS Process. The design of voltage-controlled oscillator is based on an LC-resonator with a spiral inductor of octagonal type and pMOS-varactors. Only two metal layer have been used in the designed inductor. The frequency tuning is achieved by using parallel pMOS transistors as varactors and back-gate tuned pMOS transistors in an active region. Coarse tuning is achieved by using 3-bit pMOS-varactors and fine tuning is performed by using back-gate tuned pMOS transistors in the active region. When 3-bit digital and analog inputs are applied to the designed circuits, voltage-controlled oscillator shows the tuning feature of frequency range between 2.3 GHz and 2.64 GHz. At the power supply voltage of 2.5 V, phase noise is -128dBc/Hz at 3MHz offset from the carrier, Total power dissipation is 7.5 mW.

  • PDF

New Stress-Strain Model for Identifying Plastic Deformation Behavior of Sheet Materials (판재의 소성변형 거동을 동정하기 위한 새로운 응력-변형률 모델)

  • Kim, Young Suk;Pham, Quoc Tuan;Kim, Chan Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • In sheet metal forming numerical analysis, the strain hardening equation has a significant effect on calculation results, especially in the field of spring-back. This study introduces the Kim-Tuan strain hardening model. This model represents sheet material behavior over the entire strain hardening range. The proposed model is compared to other well known strain hardening models using a series of uniaxial tensile tests. These tests are performed to determine the stress-strain relationship for Al6016-T4, DP980, and CP Ti sheets. In addition, the Kim-Tuan model is used to integrate the CP Ti sheet strain hardening equation in ABAQUS analysis to predict spring-back amount in a bending test. These tests highlight the improved accuracy of the proposed equation in the numerical field. Bending tests to evaluate prediction accuracy are also performed and compared with numerical analysis results.

A Study on Bead Height Control of GMAW by Short Circuit Time Ratio (단락시간비를 이용한 GMAW의 비드 높이 제어에 관한 연구)

  • 감병오;조상명;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.53-59
    • /
    • 2002
  • This paper shows the experimental results controlling the height of surface and back bead in GMAW by analyzing the unexpected gaps between base metals produced in welding and by controlling welding velocity due to the variation of the gap between base metals in thin-plate welding. The back bead behavior and burn-through in I-type butt joint $CO_2$ welding of thin mild steel are analyzed in the views of short circuit time ratio and short circuit frequency. It is shown through experimental consideration that the short circuit time ratio method is more reasonable than the short circuit frequency method in analyzing the formulation of back bead under changing the gap between base metals. Based on the these results, welding manipulator is designed so as to satisfy the bead height control in real time by measuring the short circuit time ratio. To show the effectiveness of the developed bead formulation control system, the experiment is implemented under two welding conditions such as increasing gap from 0mm to 0.8mm and gradually increasing gap from 0mm to 1.2mm. The experimental results show that the bead formulation can be controlled uniformly in spite of the variation of the gap between base metals.

A 2.4 ㎓ Back-gate Tuned VCO with Digital/Analog Tuning Inputs (디지털/아날로그 입력을 통해 백게이트 튜닝을 이용한 2.4 ㎓ 전압 제어 발진기의 설계)

  • Oh, Beom-Seok;Hwang, Young-Seung;Chae, Yong-Doo;Lee, Dae-Hee;Jung, Wung
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.32-36
    • /
    • 2003
  • In this work, we have designed a fully integrated 2.4GHz LC-tuned voltage-controlled oscillator (VCO) with multiple tuning inputs for a 0.25-$\mu\textrm{m}$ standard CMOS process. The design of voltage-controlled oscillator is based on an LC-resonator with a spiral inductor of octagonal type and pMOS-varactors. Only two metal layer have been used in the designed inductor. The frequency tuning is achieved by using parallel pMOS transistors as varactors and back-gate tuned pMOS transistors in an active region. Coarse tuning is achieved by using 3-bit pMOS-varactors and fine tuning is performed by using back-gate tuned pMOS transistors in the active region. When 3-bit digital and analog inputs are applied to the designed circuits, voltage-controlled oscillator shows the tuning feature of frequency range between 2.3 GHz and 2.64 GHz. At the power supply voltage of 2.5 V, phase noise is -128dBc/Hz at 3MHz offset from the carrier. Total power dissipation is 7.5 mW.

  • PDF