• Title/Summary/Keyword: axial response

Search Result 587, Processing Time 0.022 seconds

Multi-response optimization of crashworthiness parameters of bi-tubular structures

  • Vinayagar, K.;Kumar, A. Senthil
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • This article aims at presenting multi objective optimization of parameters that affect crashworthiness characteristics of bi-tubular structures using Taguchi method with grey relational analysis. To design the experiments, the $L_9$ orthogonal array has been used and based on that, the inner tubes have been fabricated by varying the three influence factors such as reference diameter, length difference and numbers of sides of the polygon with three levels, but all the outer cylinders have the same diameter and length 90 mm and 135 mm respectively. Then, the tailor made bi-tubular steel structures were subjected into quasi static axial compression. From the test results it is found that the crushing behaviors of bi-tubular structures with different combinations were fairly significant. The important responses (crashworthiness indicators) specific energy absorption and crush force efficiency have been evaluated from load - displacement curve. Finally optimal levels of parameters were identified using grey relational analysis, and significance of parameters was determined by analysis of variance. The optimum crashworthiness parameters are reference diameter 80 mm, length difference 0 mm and number of sides of polygon is 3, i.e., triangle within the selected nine bi-tube combinations.

Creep analysis of the FG cylinders: Time-dependent non-axisymmetric behavior

  • Arefi, Mohammad;Nasr, Mehrdad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.331-347
    • /
    • 2018
  • In this paper history of stresses, strains, radial and circumferential displacements of a functionally graded thick-walled hollow cylinder due to creep phenomenon is investigated. The cylinder is subjected to an arbitrary non-axisymmetric two dimensional thermo-mechanical loading and uniform magnetic field along axial direction. Using equilibrium, strain-displacements and stress-strain relations, the governing differential equations of the problem containing creep strains are derived in terms of radial and circumferential displacements. Since the displacements are varying with time due to creep phenomenon, an analytical solution is not available for these equations. Thus, a semi-analytical procedure based on separation of variables and Fourier series together with a numerical procedure is employed. The numerical results indicate that the non-axisymmetric loading and the material grading index have significant effect on stress redistributions. Moreover, by proper selection of material for any combination of non-axisymmetric loading, one can arrive suitable response for the cylinder to achieve optimal design. With some simplifications, the results are validated with the existing literature.

Improvement of the Low-Speed Friction Characteristics of a Hydraulic Piston Pump by PVD-Coating of TiN

  • Hong Yeh-Sun;Lee Sang-Yul;Kim Sung-Hun;Lim Hyun-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.358-365
    • /
    • 2006
  • The hydraulic pump of an Electro-hydrostatic Actuator should be able to quickly feed large volume of oil into hydraulic cylinder in order to reduce the response time. On the other hand, it should be also able to precisely dispense small amount of oil through low-speed operation so that the steady state position control error of the actuator can be accurately compensated. Within the scope of axial piston type hydraulic pumps, this paper is focused on the investigation how the surface treatment of their cylinder barrel with TiN plasma coating can contribute to the reduction of the friction and wear rate of valve plate in the low-speed range with mixed lubrication. The results showed that the friction torque of the valve plate mated with a TiN coated cylinder barrel could be reduced to 22% of that with an uncoated original one when load pressure was 300 bar and rotational speed 100 rpm. It means that the torque efficiency of the test pump was expected to increase more than 1.3% under the same working condition. At the same time, the wear rate of the valve plate could be reduced to $40\sim50%$.

Validation of Contact Modeling Technique for Dynamic Analysis of Roller Bearing System (롤러 베어링의 동역학 해석을 위한 접촉 모델링 기법의 검증)

  • Jung, Eun-Kyo;Choi, Jin-Hwan;Rhim, Sung-Soo;Ryu, Han-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.115-123
    • /
    • 2007
  • In this paper, an analytical model is developed to describe the dynamic characteristics of a roller bearing. In order to obtain accurate dynamic response of roller bearing, each roller is modeled as a rigid body, which has radial and axial movement and rotational constraints. Beam element between outer race segments is used to consider flexibility of outer race. Beam deflection is calculated from beam forces and used for contact between roller and outer race. The efficient contact search kinematics and algorithms in the context of the compliance contact model are implemented to detect the interactions between roller and race for the sake of speedy and robust solutions. The numerical results are validated with another analysis results which are calculated using waviness condition. Increasing rollers, dynamic responses are compared with each other. In order to confirm dynamic behavior and nonlinear characteristic of roller bearing, Poincare map is used.

Effects of Port Masking on Emission (포트 마스킹이 엔진의 배기에 미치는 영향)

  • Kim, Hyeong-Sig;Park, Chan-Jun;Ohm, In-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.23-28
    • /
    • 2011
  • To secure basic data for intake port design, effects of a port masking on the part load performance were investigated in a 4 valve SI engine. For this purpose, 9 kinds of masking, which have different shapes and masking ratio, are applied to the engine intake system. The characteristics of the performance were estimated through mixture response test at various engine load and speed. The results show that NOx emission, one of indexes for stratification, increases considerably in spite of retarded spark timing due to the stratification which is caused by unequal flow distribution between the two intake ports. The mechanism of stratification by masking is different from axial stratification and the fuel entering through masked port plays a very important role in this stratification process. In conclusion, the port masking method could be easily applied to engine intake system and be very effective for inducing the stratified charging without the change of port design.

A Study on the Affection of Frequency and Displacement for Nonlinear Viscoelastic Bushing Model (비선형 점탄성 부싱모델에 대한 주파수와 변위의 영향에 대한 연구)

  • Kim, Sung-Jin;Min, Je-Hong;Lee, Seong-Beom
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.334-341
    • /
    • 2003
  • A bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force applied to the shaft and the relative deformation of a bushing is nonlinear and exhibits features of viscoelasticity. A force-displacement relation for bushings is important for multibody dynamics numerical simulations. For the nonlinear viscoelastic axial response, Pipkin-Rogers model, the direct relation of force and displacement, has been derived from Lianis model and the sinusoidal input was used fer Pipkin-Rogers model, and the affection of displacement with frequency change was studied with Pipkin-Rogers model.

Design of the Frequency Selective Surface with Transformation of Linear-to-circular Polarization (원편파 변환 주파수 선택 반사기 설계)

  • Ko, Ji-Whan;Cho, Young-Ki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.1
    • /
    • pp.34-42
    • /
    • 2001
  • The new periodic array structure or frequency selective surface with polarizers characteristic is proposed. The present structure is constructed with two sheets or FSS material, spaced about one-eight wavelength apart, the dipole element orientations of the two sheets being almost perpendicular to each other. The methods of the spectral domain immittance and MoM are used to analyze electromagnetic scattering from this periodic array structure. To confirm the validity of the polrizer's functions or the new periodic array structure, frequency selective surfaces are fabricated, calculated values for the frequency response of the reflection and transmission loss are compared with measured values. Good correspondence has been observed between them. Good axial ratio has been also observed to be achieved in the proposed structure.

  • PDF

Modelling and classification of tubular joint rigidity and its effect on the global response of CHS lattice girders

  • Wang, Wei;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.677-698
    • /
    • 2005
  • In engineering practice, tubular connections are usually assumed pinned or rigid. Recent research showed that tubular joints may exhibit non-rigid behavior under axial or bending loads. This paper is concerned with establishing a new classification for tubular joints and investigating the effect of joint rigidity on the global behavior of CHS (Circular Hollow Section) lattice girders. Parametric formulae for predicting tubular joint rigidities are proposed, which are based on the finite element analyses through systematic variation of the main geometric parameters. Comparison with test results proves the reliability of these formulae. By considering the deformation patterns of respective parts of Vierendeel lattice girders, the boundary between rigid and semirigid tubular connections is built in terms of joint bending rigidity. In order to include characteristics of joint rigidity in the global structural analysis, a type of semirigid element which can effectively reflect the interaction of two braces in K joints is introduced and validated. The numerical example of a Warren lattice girder with different joint models shows the great effect of tubular joint rigidities on the internal forces, deformation and secondary stresses.

Experimental and analytical assessment of SRF and aramid composites in retrofitting RC columns

  • Dang, Hoang V.;Shin, Myoungsu;Han, Sang Whan;Lee, Kihak
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.797-815
    • /
    • 2014
  • This research aimed to investigate retrofitting methods for damaged RC columns with SRF (Super Reinforced with Flexibility) and aramid composites and their impacts on the seismic responses. In the first stage, two original (undamaged) column specimens, designed to have a flexural- or shear-controlled failure mechanism, were tested under quasi-static lateral cyclic and constant axial loads to failure. Afterwards, the damaged column specimens were retrofitted, utilizing SRF composites and aramid rods for the flexural-controlled specimen and only SRF composites for the shear-controlled specimen. In the second stage, the retrofitted column specimens were tested again under the same conditions as the first stage. The hysteretic responses such as strength, ductility and energy dissipation were discussed and compared to clarify the specific effects of each retrofitting material on the seismic performances. Generally, SRF composites contributed greatly to the ductility of the specimens, especially for the shear-controlled specimen before retrofitting, in which twice the deformation capacity was obtained in the retrofitted specimen. The shear-controlled specimen also experienced a flexural failure mechanism after retrofitting. In addition, aramid rods moderately fortified the specimen in terms of the maximum shear strength. The maximum strength of the aramid-retrofitted specimen was 12% higher than the specimen without aramid rods. In addition, an analytical modeling of the undamaged specimens was conducted using Response-2000 and Zeus Nonlinear in order to further validate the experimental results.

Analytical model for high-strength concrete columns with square cross-section

  • Campione, G.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.295-316
    • /
    • 2008
  • In the present paper a mechanical model to predict the compressive response of high strength short concrete columns with square cross-section confined by transverse steel is presented. The model allows one to estimate the equivalent confinement pressures exercised by transverse steel during the loading process taking into account of the interaction of the stirrups with the inner core both in the plane of the stirrups and in the space between two successive stirrups. The lateral pressure distributions at hoop levels are obtained by using a simple model of elastic beam on elastic medium simulating the interaction between stirrups and concrete core, including yielding of steel stirrups and damage of concrete core by means of the variation in the elastic modulus and in the Poisson's coefficient. Complete stress-strain curves in compression of confined concrete core are obtained considering the variation of the axial forces in the leg of the stirrup during the loading process. The model was compared with some others presented in the literature and it was validated on the basis of the existing experimental data. Finally, it was shown that the model allows one to include the main parameters governing the confinement problems of high strength concrete members such as: - the strength of plain concrete and its brittleness; - the diameter, the pitch and the yielding stress of the stirrups; - the diameter and the yielding stress of longitudinal bars; - the side of the member, etc.