• Title/Summary/Keyword: automorphism groups

Search Result 54, Processing Time 0.019 seconds

SPLITTINGS FOR THE BRAID-PERMUTATION GROUP

  • Jeong, Chan-Seok;Song, Yong-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.179-193
    • /
    • 2003
  • The braid-permutation group is a group of welded braids which is the extension of Artin's braid groups by the symmetric groups. It is also described as a subgroup of the automorphism group of a free group. We also show that the plus-construction of the classifying space of the infinite braid-permutation group has the following two types of splittings BBP(equation omitted) B∑(equation omitted) $\times$ X, BBP(equation omitted) B $^{+}$$\times$ Y=S$^1$$\times$Y, where X, Y are some spaces.

COMMUTING AUTOMORPHISM OF p-GROUPS WITH CYCLIC MAXIMAL SUBGROUPS

  • Vosooghpour, Fatemeh;Kargarian, Zeinab;Akhavan-Malayeri, Mehri
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.643-647
    • /
    • 2013
  • Let G be a group and let $p$ be a prime number. If the set $\mathcal{A}(G)$ of all commuting automorphisms of G forms a subgroup of Aut(G), then G is called $\mathcal{A}(G)$-group. In this paper we show that any $p$-group with cyclic maximal subgroup is an $\mathcal{A}(G)$-group. We also find the structure of the group $\mathcal{A}(G)$ and we show that $\mathcal{A}(G)=Aut_c(G)$. Moreover, we prove that for any prime $p$ and all integers $n{\geq}3$, there exists a non-abelian $\mathcal{A}(G)$-group of order $p^n$ in which $\mathcal{A}(G)=Aut_c(G)$. If $p$ > 2, then $\mathcal{A}(G)={\cong}\mathbb{Z}_p{\times}\mathbb{Z}_{p^{n-2}}$ and if $p=2$, then $\mathcal{A}(G)={\cong}\mathbb{Z}_2{\times}\mathbb{Z}_2{\times}\mathbb{Z}_{2^{n-3}}$ or $\mathbb{Z}_2{\times}\mathbb{Z}_2$.

NORMAL EDGE-TRANSITIVE CIRCULANT GRAPHS

  • Sim, Hyo-Seob;Kim, Young-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.317-324
    • /
    • 2001
  • A Cayley graph of a finite group G is called normal edge-transitive if its automorphism group has a subgroup which both normalized G and acts transitively on edges. In this paper, we consider Cayley graphs of finite cyclic groups, namely, finite circulant graphs. We characterize the normal edge-transitive circulant graphs and determine the normal edge-transitive circulant graphs of prime power order in terms of lexicographic products.

  • PDF

COMPLEX SCALING AND GEOMETRIC ANALYSIS OF SEVERAL VARIABLES

  • Kim, Kang-Tae;Krantz, Steven G.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.523-561
    • /
    • 2008
  • The purpose of this paper is to survey the use of the important method of scaling in analysis, and particularly in complex analysis. Applications are given to the study of automorophism groups, to canonical kernels, to holomorphic invariants, and to analysis in infinite dimensions. Current research directions are described and future paths indicated.

AFFINE HOMOGENEOUS DOMAINS IN THE COMPLEX PLANE

  • Kang-Hyurk, Lee
    • Korean Journal of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.643-652
    • /
    • 2022
  • In this paper, we will describe affine homogeneous domains in the complex plane. For this study, we deal with the Lie algebra of infinitesimal affine transformations, a structure of the hyperbolic metric involved with affine automorphisms. As a consequence, an affine homogeneous domain is affine equivalent to the complex plane, the punctured plane or the half plane.

HILBERT'S THEOREM 90 FOR NON-COMPACT GROUPS

  • Rovinsky, Marat
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1757-1771
    • /
    • 2017
  • Let K be a field and G be a group of its automorphisms. It follows from Speiser's generalization of Hilbert's Theorem 90, [10] that any K-semilinear representation of the group G is isomorphic to a direct sum of copies of K, if G is finite. In this note three examples of pairs (K, G) are presented such that certain irreducible K-semilinear representations of G admit a simple description: (i) with precompact G, (ii) K is a field of rational functions and G permutes the variables, (iii) K is a universal domain over field of characteristic zero and G its automorphism group. The example (iii) is new and it generalizes the principal result of [7].

AUTOCOMMUTATORS AND AUTO-BELL GROUPS

  • Moghaddam, Mohammad Reza R.;Safa, Hesam;Mousavi, Azam K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.923-931
    • /
    • 2014
  • Let x be an element of a group G and be an automorphism of G. Then for a positive integer n, the autocommutator $[x,_n{\alpha}]$ is defined inductively by $[x,{\alpha}]=x^{-1}x^{\alpha}=x^{-1}{\alpha}(x)$ and $[x,_{n+1}{\alpha}]=[[x,_n{\alpha}],{\alpha}]$. We call the group G to be n-auto-Engel if $[x,_n{\alpha}]=[{\alpha},_nx]=1$ for all $x{\in}G$ and every ${\alpha}{\in}Aut(G)$, where $[{\alpha},x]=[x,{\alpha}]^{-1}$. Also, for any integer $n{\neq}0$, 1, a group G is called an n-auto-Bell group when $[x^n,{\alpha}]=[x,{\alpha}^n]$ for every $x{\in}G$ and each ${\alpha}{\in}Aut(G)$. In this paper, we investigate the properties of such groups and show that if G is an n-auto-Bell group, then the factor group $G/L_3(G)$ has finite exponent dividing 2n(n-1), where $L_3(G)$ is the third term of the upper autocentral series of G. Also, we give some examples and results about n-auto-Bell abelian groups.

PRIMITIVE POLYNOMIAL RINGS

  • Kwon, Mi-Hyang;Kim, Chol-On;Huh, Chan
    • East Asian mathematical journal
    • /
    • v.16 no.1
    • /
    • pp.71-79
    • /
    • 2000
  • We show that the intersection of two standard torus knots of type (${\lambda}_1$, ${\lambda}_2$) and (${\beta}_1$, ${\beta}_2$) induces an automorphism of the cyclic group ${\mathbb{Z}}_d$, where d is the intersection number of the two torus knots and give an elementary proof of the fact that all non-trivial torus knots are strongly invertiable knots. We also show that the intersection of two standard knots on the 3-torus $S^1{\times}S^1{\times}S^1$ induces an isomorphism of cyclic groups.

  • PDF

ON THE INTERSECTION OF TWO TORUS KNOTS

  • Lee, Sang-Youl;Lim, Yong-Do
    • East Asian mathematical journal
    • /
    • v.16 no.1
    • /
    • pp.61-69
    • /
    • 2000
  • We show that the intersection of two standard torus knots of type (${\lambda}_1$, ${\lambda}_2$) and (${\beta}_1$, ${\beta}_2$) induces an automorphism of the cyclic group ${\mathbb{Z}}_d$, where d is the intersection number of the two torus knots and give an elementary proof of the fact that all non-trivial torus knots are strongly invertiable knots. We also show that the intersection of two standard knots on the 3-torus $S^1{\times}S^1{\times}S^1$ induces an isomorphism of cyclic groups.

  • PDF

EQUIVALENCE CLASSES OF MATRICES IN $GL_2(Q)$ AND $SL_2(Q)$

  • Darafsheh, M.R.;Larki, F. Nowroozi
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.433-446
    • /
    • 1999
  • Let G denote either of the groups $GL_2(q)$ or $SL_2(q)$. The mapping $theta$ sending a matrix to its transpose-inverse is an auto-mophism of G and therefore we can form the group $G^+$ = G.<$theta$>. In this paper conjugacy classes of elements in $G^+$ -G are found. These classes are closely related to the congruence classes of invert-ible matrices in G.