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PRIMITIVE POLYNOMIAL RINGS

Mi Hyang Kwon, Chol On Kim and Chan Huh

Abstract. We shov/ th교* the intersection of turo standard toiui> knots 

of type (入i,人2)and (0i,02)induces an automorphism of the <yclic 

gioup wheie d is 나intersection nuinbei of the two toius knots

and give an elementary pioot of the fact that all nou-tiivial toius knots 

aie sti ongly inveitiable knots. We also show that the intellect ion of 

two standard knots on the 3-toius S1 xS1 xS1 induces an isoinoiphibin 

of cyclic gioups

Throughout this paper all rings are associative with identity. Given 
a ring R、R[x] denotes the polynomial ring over R with x its inde
terminate. In this note we study the primitivity of polynomial rings, 
concerning the contraposition of the condition in [8] that is both a 
Morita invariant property and a generalization of the following two 
conditions:

(1) the quasi-duo condition, which was initiated by Yu in \9] and is 
related to the Bass' conjecture in)2〕，

(2) the pm condition that was studied by Birkenmeier-Kim-Park in 
3」.

A ring R is called maxmally right bounded if every maximal right 
ideal of R contains a maximal ideal of R. Consider a condition.* (*)
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there exists a maximal right ideal that does not contain a maximal 
ideal. Clearly a ring R satisfies (*) if and only if R is not maximally 
right bounded. A ring is called right (left) duo if every right ideal is two- 
sided, and a ring is called right (left) quasi-duo if every maximal right 
(left) ideal of is two-sided. Commutative rings and abelian regular rings 
are right duo, right duo rings are right quasi-duo, and right quasi-duo 
rings are maximally right bounded. The n by n full matrix ring over 
a division ring, with n any positive integer 2, is not right quasi- 
duo and does not satisfies (*); but it is maximally right bounded 
However the ring of row finite infinite matrices over a division, ring, 
say R, satisfies (*) but is not maximally right bounded because there 
exist maximal right ideals of R that do not contain the nonzero proper 
ideal {f E R \ rank(/) is finite } of R. A ring R is said to satisfy pm 
if every prime ideal of R is maximal. Such rings are maximally right 
bounded, but there are rings which are maximally right bounded but 
do not satisfy.pm as in [3- Example 3 3, In this note we also obtain 
direct proofs for the contrapositions of main results in [8]

We first take the contraposition of [8. Proposition 1] as follows.

PROPOSITION 1. Given a ring R the following statements are equiv
alent:

(1) R satisfies (*).
(2) There exists a right primitive ideal of R that is not maximal.

PROOF. (1)=^>(2). Since R satisfies (*), there exists a maximal right 
ideal M oi R that does not contain a maximal ideal of R、But M 
contains a right primitive ideal of R which is the bound of M, say P. 
Thus P is not a maximal ideal of R.

(2)=>(1).  Let P be a right primitive ideal of R that is not maximal. 
There is a maximal right ideal of R whose bound is P, so R satisfies 
(*).

COROLLARY 2. Proposition lj Given a ring R the following 
statements are equivalent:

(1) R is a maximally right bounded rmg.
(2) Every right primitive ideal of R is rnaxunal.
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PROOF. By Proposition 1

We next recall some properties of maximally right bounded rings in 
[8j. A ring R is called a Pl-rzng if R satisfies a polynomial identity 
with coefficients in the ring of integers.

Lemma 3. /& Corollary 2, Corollary 3 and Lemma 4] Given a ring 
R we have the following statements:

(1) If every right primitive factor rmg of R %s artmian then R is 
maximally right boimded

(2) If R is a Pl-rmg then R is maximally right bounded.
(3) If R is a division rmg that is finite dimensional over its center 

then R[x] is maximally right bounded.
(4) 4 semiprimitwe maximally right bounded rmg is a subdirect 

product of simple rings.
(5) If a. ring R ts maxgalby ^ght bounded, then t.s every homo

morphic image of R.

Note that if given a ring R is a right primitive, then eRe is also a 
right primitive ring for every nonzero idempotent e E R. The following 
is one of our main results in this note.

Theorem 4. Let R be a ring and 0 7^ e2 == e G J?. Suppose that 
ele 들 eRe for each proper ideal I of R. Then the following statements 
are equivalent'

(1) R satisfies (*).
(2) eRe satisfies (*).

PROOF. (2)=>⑴ By [8, Lemma 7]
(1)=>(2).  We use the proof of [8, Theorem 8]. Let I be a maximal 

right ideal of R whose bound is P, such that P is not maximal Then P 
is a right primitive ideal of H. We will show that ePe is not a maximal 
ideal in eRe. For convenience, let R = R/P, and r — r+P for all r G 
Then. is a right primitive ring. Since ePe — eReQ P and ePe 寸二 eRe 
by hypoth은sis, we have e P and hence e is a nonzero idempotent in R.
Thus eRe is also a right primitive ring. Since eRe/ePe = eRe, ePe is 
a right primitive ideal of eRe Now let Q be a maximal ideal of R that 
contains P (of course P 으 Q). Then ePe C eQe 을 eRe by hypothesis 
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and eQe is maximal in eRe by Lemma 2-6. Assume ePe = eQe. Then 
eQe = ePe C P, and hence (Re)Q(Re) = R(eQe) C RP = P. Since 
P is right primitive and e P, we get Q Q P, contradiction, to the 
fart that P C Q . Therefore ePe C eQe and this completes the proof.

COROLLARY 5. /& Theorem 8] Let B be a ring and 0 e2 — e E R. 
Suppose that ele 을 eRe for each proper ideal I of R. Then the following 
statements are eqq血히(기

(1) R is maximally right bounded.
(2) eRe is maximally right bounded.

We may compare the following result with [9, Proposition 2.1j.

PROPOSITION 6. For a ring R the following statements are equiva
lent:

(1) R satisfies (*).
(2) Every n by n upper triangular matrix rmg over R satisfies (*).
(3) Every n by n lowei tviangula.r matrix rmg over R satisfies (*), 

where n is any finite (m this case assume n>2) or an infinite cardinal 
number.

PROOF. We use the proofs of [8, Corollary 9]. (1)=>(2). Let S be 
the n by n upper triangular matrix ring over R, Note that every right 
primitive ideal 丿 of S is of the form, the (z, z)-entry of J is a right 
primitive ideal of R for some t 6 (1, 2,... say P. and every other 
entry of J is R. By Proposition 1 and the condition (1), we may take 
a right primitive ideal P m R that is not a maximal ideal of R. So J 
is not maximal in S and this gives (2).

(2)=>(1). Let e be the matrix such that (1, l)-entry of e is 1r and 
other entries of e are 0R. Then 0 e2 - e e S and eSe £ R So R 
satisfies (*) by the condition (2) and [8, Lemma 7].

We next obtain the equivalence (1)<》(3) by the symmetry.

COROLLARY 7. /& Corollary 9] For a ring R the following state- 
ments are equivalent:

(1) R is maximally right bounded.
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(2) Every n by n upper triangular matrix rmg over R is maxirnolly 
right bounded.

(3) Every n by n lower triangular matrix rmg over R is maximally 
right bounded} where n is any finite 07 an infinite cardinal number.

We denote the n by n full matrix ring over a ring R by Matn (R) 
for any positive integer n.

LEMMA 8. /& Corollary 2시 For a ring R and any positive integer 
n, the following statements are equivalent:

(1) R is maximally right bounded.
(2) Matn(R) %s maximally right bounded.

By Lemma 8, we have the following equivalence for rings that satisfy 
(*).

C사拄QLLA璋’ 9. For a nng B, any-positivv / ritege^ n. the follotb- 
mg statements are equivalent:

(1) R satisfies (*).
(2) Matn(R) satisfies (*).

Therefore we have the following by Theorem 4, Corollary 9 and [1. 
Corollary 22.7].

COROLLARY 10. Suppose that a rmg R satisfies (*). Then for every 
fimtely generated projective right R~module P, Endp(P) also satisfies 
(*); especially the condition (*) is a Morita invariant property, tuhere 
Endn(P) ls the endornorphtsm ring of P over R.

Next we study the primitivity of polynomial rings over division rings 
First we observe the polynomial rings over rings satisfying (*).

PROPOSITION 11 If a ring R satisfies (*), then R\x] satisfies (*).

PROOF. Notice first that I + R[x]x, with I a right primitive ideal 
of R. is also a right primitive ideal of R[x]. Since R satisfies (*), we 
may take I such that I is not a maximal ideal. So / 十 R[x]:i is also not 
a maximal ideal of R\x] but a right primitive ideal of hence B\x] 
satisfies (*) by Proposition 1.
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As the converse of Proposition 11, we may raise the following ques
tion.

Question, Does a ring R satisfy (*) if R[x] satisfies (*)?

However the answer is negative by the following example.

Example 12. Let W — W1[Q] be the first Weyl algebra over the 
field Q of rational numbers, subject to yx = xy + 1, and let R be the 
right quotient division ring of W. Then the center of R is Q, and since 
R is purely transcendental over Q, it follows that A = is not
a division ring by [5, Theorem 3. 21], where Q(t) is the quotient field 
of the polynomial ring in an indeterminate i. Hence A 寸二 R(t、); 
so R\t\ is right primitive by [5, Theorem 3. 21], where R[t] is the 
polynomial ring over Rint and is the right quotient division ring 
of Clearly R does not satisfy (*). But 나le zero ideal of B\t\ is 
right primitive which is not maximal. Therefore satisfy (*) by 
Proposition 1.

The following is also one of our main results in this paper.

THEOREM 13. For a simple ring R the following statements are 
equivalent:

(1) R[x] satisfies (*).
(2) R[x] is right primitive.

PROOF. (2)=>(1). Note that the zero ideal of /?[x] is always not 
maximal. Since R\x\ is right primitive by the condition. R[x] satisfies 
(*) by Proposition 1.

(1)=>(2). Suppose that the condition (1) holds. Then there is a 
right primitive ideal P of R\x] that is not maximal by Proposition 
1- Let Al be a maximal ideal of R[x] such that P C M. Here 
assume P 0. Then [8, Lemma 151 implies that P is generated 
by a nonzero central monic polynomial in R\x] because R is simple 
by hypothesis, say P = f(x)R[x\. Also by [8, Lemma 15j. M = 
h(x)R[x] for some nonzero central monic polynomial h(x) G 
Since M contains P, /(x) = h(x)g(x) for some g{x) € R[x] and so 
P = f(x)R[x] = h(x)R[x]g(x)R\x]. But P is right primitive (hence 
prime), so M — h(x)R[x] C F (a contradiction to the fact that P 으 M、)
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or g(x)R[x] 으 丿그 If g(z)一하刼 C R then g(x) — /(x)rn(x) for some 
m(x) G R\x] and so f(x) = h(x)f(x)m(x) = It then
follows that = m{x)h(x} = 1国씨 since /(z) is monic; hence
M — R\x], a contradiction to the fact that M is a maximal ideal of 
R[x]. Consequently P must be the zero ideal and therefore R\x] is right 
primitive

By Theorem 13. we obtain the following result.

COROLLARY 14. /& Theorem 16] For a simple rmq R the Jollowmg 
statements are equivalent:

(1) R[x] is maximally right bounded.
(2) R[x] is not right primitive.

We do not know whether the condition (*) is left-right symmetric 
But if J? is a division ring, then R\x] satisfies (*) if and only if R\a> 
satisfies the “left-handed” version of (*) as in the following

COROLLARY 15. Let R be a dwiswn rmg. Then the following state
ments are equivalent:

(1) R[x] satisfies (*).
(2) B[x] is right primitive.
(3) R[x] is left pr imitwe.
(4) R[x] satisfies the left version of (*)

PROOF. By [8. Lemma 18] and Theorem 13.

Due to Jacobson [7]. a ring is called strongly right (left) bounded if 
every nonzero right (left) ideal contains a nonzero ideal* and a ring is 
called right (left) bounded if every essential right (left) ideal contains a 
nonzero ideal Strongly right bounded rings are clearly right bounded. 
In [4], we have that a ring R is right duo if and only if every factor 
ring of R is strongly right bounded In the following arguments we 
obtain the connections among the preceding conditions, right duoness. 
maximally right boundedness and 나}e condition (*).
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LEMMA 16. [6, Theorem 15.2] Let R be a, simple Artmwn rmg. 
Then the following statements are equivalent:

(1) R[x] %s right bounded.
(2) R[x] %s not right primitive.

A ring R is called right Ore if given a^b E R with b regular there 
exist aj,6i G R with regular such that abi = bap It is a well-known 
fact that R is a right Ore ring if and only if there exists the classical 
right quotient ring of R. Left case may be defined similarly. Given a 
division ring D, D[x] is an Ore (i.e., both right and left Ore) domain, so 
은very nonzero right (left) ideal is essential; hence D[x] is strongly right 
(left) bounded if and only if it is right (left) bounded. Consequently 
we have the following results.

PROPOSITION 17. Let R be a Simple Artiman ring. Then the fol
lowing statements are equivalent:

(1) is right bounded.
(2) R[x] is not rtght primitive.
(3) R国 is maximally right bounded.

PROOF. By Corollary 14 and Lemma 16.

COROLLARY 18. Let D be a division rmg. Then the follounng state
ments are equivalent:

(1) D[x] i.s strongly right bounded.
(2) D[x] is right bounded.
(3) D\x] bs not right primitive.
(4) D\x\ t,s maximally right hounded.
(5) The left versions of the statements (1)-(4)・

PROOF. By Corollary 15, Proposition 17 and the argument prior to 
Proposition 17.

There exists a division ring that does not satisfy the statements 
in Corollary 18. Let R be the Weyl division algebra over a field of 
characteristic zero. Then R[x] is right primitive by [6, Theorem 15.16].
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