PRIMITIVE POLYNOMIAL RINGS

Mi Hyang Kwon, Chol On Kim and Chan Huh

Abstract

We show that the intersection of turostandard ton knots of type $\left(\lambda_{1}, \lambda_{2}\right)$ and (β_{1}, β_{2}) induces an automorphusm of the cyche group \mathbb{Z}_{d}, where $d i s$ the intersection number of the 1 wo toms knots and give an elementary proot of the fact that all non-tivial tons knots are stiongly meintiable knots. We also show that the intersection of two standard knots on the 3 -toms $S^{1} \times S^{1} \times S^{1}$ mduces an momomphem of cychic groups

Throughout this paper all rings are associative with identity. Given a ring $R, R[x]$ denotes the polynomial ring over R with u its indeterminate. In this note we study the primitivity of polynomial rings, concerning the contraposition of the condition in [8] that is both a Morita invariant property and a generalization of the following two conditions:
(1) the quasi-duo condition, which was initiated by Yu in [9] and is related to the Bass' conjecture in [2],
(2) the pm condition that was studied by Birkenmerer-Kim-Park in (3)

A ring R is called maxumally raght bounded if every maximal right ideal of R contains a maximal ideal of R. Consider a condition. (*)

[^0]there exists a maximal right ideal that does not contain a maximal ideal. Clearly a ring R satisfies (*) if and only if R is not maximally right bounded. A ring is called right (left) duo if every right ideal is twosided, and a ring is called rught (left) quası-duo if every maximal right (left) ideal of is two-sided. Commutative rings and abelian regular rings are right duo, right duo rings are right quasi-duo, and right quasi-duo rings are maximally right bounded. The n by n full matrix ring over a division ring, with n any positive integer $\geqq 2$, is not right quasiduo and does not satisfies (*); but it is maximally right bounded However the ring of row finite infinite matrices over a division ring. say R, satisfies (*) but is not maximally right bounded because there exist maximal right ideals of R that do not contain the nonzero proper ideal $\{f \in R \mid \operatorname{rank}(f)$ is finite $\}$ of R. A ring R is said to satisfy $p m$ if every prime ideal of R is maximal. Such rings are maximally right bounded, but there are rings which are maximally right bounded but do not satisfy pmasin in Fxample 33 , In this note we also obtain direct proofs for the contrapositions of main results in 8$]$

We first take the contraposition of [8. Proposition 1] as follows.
Proposition 1. Given a ring R the followng statements are equiwalent:
(1) R satisfies (${ }^{*}$).
(2) There exists a right promatuve udeal of R that is not maxamal.

Proof. $(1) \Rightarrow(2)$. Since R satisfies (*), there exists a maximal right ideal M of R that does not contain a maximal ideal of R. But M contains a right primitive ideal of R which is the bound of M, say P. Thus P is not a maximal ideal of R.
$(2) \Rightarrow(1)$. Let P be a right primitive ideal of R that is not maximal. There is a maximal right ideal of R whose bound is P, so R satisfies (*).

Corollary 2. [8, Proposution 1/Given a ring R the following statements are equivalent:
(1) R us a maximally right bounded ring.
(2) Every right promatute ideal of R is maximal.

Proof. By Proposition 1

We next recall some properties of maximally right bounded rings in [8j. A ring R is called a PI-ring if R satisfies a polynomial identity with coefficients in the ring of integers.

Lemma 3. /8, Corollary 2, Corollary 3 and Lemma 4/ Guen a rung R we have the following statements:
(1) If every right primituve factor ring of R is artintan then R is maximally right bounded
(2) If R is a PI-ring then R is maxmally rught bounded.
(3) If R is a division ring that is finte dimensional over ats center then $R[x]$ is maximally right bounded.
(4) 4 semipramative: maxamally right bounded ring is a subdirect product of stmple rings.
(5) If a rang R is maxtmally right bounded, then so ts enery homomorphuc tmage of R.

Note that if given a ring R is a right primitive, then $e R e$ is also a right primitive ring for every nonzero idempotent $e \in R$. The following is one of our main results in this note.

Theorem 4. Let R be a ring and $0 \neq e^{2}=e \in R$. Suppose that eIe \varsubsetneqq eRe for each proper teal I of R. Then the following statements are equivalent-
(1) R satisfies (${ }^{*}$).
(2) eRe satusties (*).

Proof. (2) \Rightarrow (1) By [8, Lemma 7]
$(1) \Rightarrow(2)$. We use the proof of $[8$, Theorem 8$]$. Let I be a maximal right ideal of R whose bound is P, such that P is not maximal Then P is a right primitive ideal of R. We will show that $e P \epsilon$ is not a maximal ideal in $\epsilon R e$. For convenience. let $\bar{R}=R / P$, and $\bar{r}=r+P$ for all $r \in R$ Then \bar{R} is a right primitive ring. Since $e P e=\epsilon R e \cap P$ and $e P e \neq t R e$ by hypothesis, we have $e \notin P$ and hence \bar{e} is a nonzero idempotent in \bar{R}. Thus $\bar{e} \bar{R} \bar{e}$ is also a right primitive ring. Since $e R e / e P e \cong \bar{\epsilon} \bar{R} \bar{e}, e P e$ is a right primitive ideal of $e R e$ Now let Q be a maximal ideal of R that contains P (of course $P \subsetneq Q$). Then $e P \epsilon \subseteq e Q e \subsetneq e R e$ by hypothesis
and $e Q e$ is maximal in $e R e$ by Lemma 2.6. Assume $e P e=e Q e$. Then $e Q e=e P e \subseteq P$, and hence $(R e) Q(R e)=R(e Q e) \subseteq R P=P$. Since P is right primitive and $e \notin P$, we get $Q \subseteq P$, a contradiction to the fact that $P \subsetneq Q$. Therefore $e P e \subsetneq e Q e$ and this completes the proof.

Corollary 5. /8, Theorem 8/Let R be a rang and $0 \neq e^{2}=e \in R$. Suppose that eIe $\varsubsetneqq e$ Re for each proper adeal I of R. Then the follownng statements are equivalent:
(1) R is maximally right bounded.
(2) eke is maxtmally nght bounded.

We may compare the following result with [9, Proposition 2.1].
Proposimion 6. For a ring R the followng statements are equivalent:
(1) R satusfies (${ }^{*}$).
(2) Every n by n upper traangular matrix rang over R satasfies (*).
(3) Every n by n lower traangular matrax ring over R satasfies (${ }^{*}$), where n is any finte (in thes case assume $n \geq 2$) or an infinate cardmal number.

Proof. We use the proofs of [8, Corollary 9]. (1) \Rightarrow (2). Let S be the n by n upper triangular matrix ring over R. Note that every right primitive ideal J of S is of the form. the (i, i)-entry of J is a right primitive ideal of R for some $\imath \in\{1,2, \ldots\}$. say P, and every other entry of J is R. By Proposition 1 and the condition (1), we may take a right primitive ideal P in R that is not a maximal ideal of R. So J is not maximal in S and this gives (2).
(2) $\Rightarrow(1)$. Let e be the matrix such that $(1,1)$-entry of e is 1_{R} and other entries of e are 0_{R}. Then $0 \neq \epsilon^{2}=e \in S$ and $e S e \cong R$. So R satisfies (${ }^{*}$) by the condition (2) and [8, Lemma $7!$.

We next obtain the equivalence $(1) \Leftrightarrow(3)$ by the symmetry.
Corollary 7. 18, Corollay 9/ For a ring R the following statements are equivalent:
(1) R is maximally rught bounded.
(2) Every n by n upper trangular matrex tung over R is maximally right bounded.
(3) Every n by n lower triangular matrix rang over R is maxamally right bounded, where n is any finite or an infinte cardnal number.

We denote the n by n full matrix ring over a ring R by $\operatorname{Mat}_{n}(R)$ for any positive integer n.

Lemma 8. (8, Conollaty 24] For a ring R and any posttive integer n, the followng statements are equvalent:
(1) R is maximally right bounded.
(2) $\mathrm{Mat}_{n}(R)$ is maxmally rught bounded.

By Lemma 8, we have the following equivalence for rings that satisfy (*).
 ung statements are equivolent:
(1) R satisfies (*).
(2) $\operatorname{Mat}_{\pi}(R)$ satisfies (*).

Therefore we have the following by Theorem 4, Corollary 9 and [1. Corollary 22.7].

Corollary 10. Suppose that a ring R satesfies (*). Then for every fintely generated projectuve right. R-module P, Ertd ${ }_{R}(P)$ also satisfies $\left(^{*}\right)$; especally the condation $\left(^{*}\right)$ is a Morata moarnant property, where $\operatorname{End}_{R}(P)$ is the endomorphusm ring of P ovey I.

Next we study the primitivity of polynomial rings over division rings First we observe the polynomial rings over rings satisfying (*).

Proposition 11 If a rang R satusfies (*), then $R[x]$ satusfues (*).
Proof. Notice first that $I+K\left[x_{1}^{2} x\right.$, with I a right primitive ideal of R. is also a right primitive ideal of $R[x]$. Since R satisfies (*), we may take I such that I is not a maximal ideal. So $I+R[x]$ is also not a maximal ideal of $R[x]$ but a right primitive ideal of $R[x]$; hence $R[x]$ satisfies (*) by Proposition 1.

As the converse of Proposition 11, we may raise the following question.

Questıon. Does a ring R satisfy $\left(^{*}\right)$ if $R[x]$ satisfies $\left({ }^{*}\right)$?
However the answer is negative by the following example.
Example 12. Let $W=W_{1}[\mathbb{Q}]$ be the first Weyl algebra over the field \mathbb{Q} of rational numbers, subject to $y x=x y+1$, and let R be the right quotient division ring of W. Then the center of R is \mathbb{Q}, and since R is purely transcendental over \mathbb{Q}, it follows that $A=R \otimes \mathbb{Q} \mathbb{Q}(t)$ is not a division ring by [5, Theorem 3. 21], where $\mathbb{Q}(t)$ is the quotient field of the polynomial ring $\mathbb{Q}[t]$ in an indeterminate t. Hence $A \neq R(t)$; so $R[t]$ is right primitive by $[5$, Theorem 3. 21], where $R[t]$ is the polynomial ring over R in t and $R(t)$ is the right quotient division ring of $R[t]$. Clearly R does not satisfy (${ }^{*}$). But the zero ideal of $R[t]$ is right primitive which is not maximal. Therefore $R[t]$ satisfy (*) by Proposition 1.

The following is also one of our main results in this paper.
Theorem 13. For a simple ring R the followng statements are equivalent:
(1) $R[x]$ satusfies $\left({ }^{*}\right)$.
(2) $R[x]$ is rught primituve.

Proof. (2) $\Rightarrow(1)$. Note that the zero ideal of $R[x]$ is always not maximal. Since $R[x]$ is right primitive by the condition. $R[x]$ satisfies ${ }^{*}$) by Proposition 1.
$(1) \Rightarrow(2)$. Suppose that the condition (1) holds. Then there is a right primitive ideal P of $R[x]$ that is not maximal by Proposition 1. Let M be a maximal ideal of $R[x]$ such that $P \subsetneq M$. Here assume $P \neq 0$. Then $[8$, Lemma 15$]$ implies that P is generated by a nonzero central monic polynomial in $R[x]$ because R is simple by hypothesis, say $P=f(x) R[x]$. Also by [8 , Lemma 15]. $M=$ $h(x) R[x]$ for some nonzero central monic polynomial $h(x) \in R[a]$. Since M contains $P, f(x)=h(x) g(x)$ for some $g(x) \in R[x\}$ and so $P=f(x) R[x]=h(x) R[x] g(x) R[x]$. But P is right primitive (hence prime), so $M=h(x) R\{x\} \subseteq P$ (a contradiction to the fact that $P \subsetneq M$)
or $g(x) R[x] \subseteq P$ If $g(x) R[x] \subseteq P$, then $g(x)=f(x) m(x)$ for some $m(x) \in R[x]$ and so $f(x)=h(x) f(x) m(x)=f(x) h(x) m(x)$. It then follows that $h(x) m(x)=m(x) h(x)=1_{R|x|}$ since $f(x)$ is monic: hence $M=R[x]$, a contradiction to the fact that M is a maximal ideal of $R[x]$. Consequently P must be the zero ideal and therefore $H[x]$ is right primitive.

By Theorem 13. we obtain the following result.
Corollary 14. (8, Theorem 16] For a simple nang R the followng statements are equivalent:
(1) $R[x]$ is maxtmally right bounded.
(2) $R[x]$ is not right pramative.

We do not know whether the condition $\left(^{*}\right.$) is left-right symmetric But if R is a division ring, then $R i x j$ satisfies (${ }^{*}$) if and only if $R[x$: satisfies the "left-handed" version of $\left({ }^{*}\right)$ as in the following

Corollary 15. Let R be a division ring. Then the followng statements are equivalent:
(1) $R[x]$ satusfies (${ }^{*}$).
(2) $R[x]$ is rught primative.
(3) $R[x]$ is left promutive.
(4) $R[x]$ satusfies the left version of (${ }^{*}$)

Proof. By i8. Lemma 18j and Theorem 13.

Due to Jacobson [7]. a ring is called strongly rught (keft) bounded if every nonzero right (left) ideal contains a nonzero ideal and a ring is called nght (left) bounded if every essential right (left) ideal contains a nonzero ideal Strongly right bounded rings are clearly right bounded. In [4], we have that a ring R is right duo if and only if every factor ring of R is strongly right bounded In the following arguments we obtain the connections among the preceding conditions, right duoness. maximally right boundedness and the condition (${ }^{*}$).

Lemma 16. (6, Theorem 15.2] Let R be a simple Artinaan ring. Then the followng statements are equivalent:
(1) $R[x]$ as rught bounded.
(2) $R[x]$ is not right primitive.

A ring R is called right Ore if given $a, b \in R$ with b regular there exist $a_{1}, b_{1} \in R$ with b_{1} regular such that $a b_{1}=b a_{1}$. It is a well-known fact that R is a right Ore ring if and only if there exists the classical right quotient ring of R. Left case may be defined similarly. Given a division ring $D, D[x]$ is an Ore (i.e., both right and left Ore) domain, so every nonzero right (left) ideal is essential; hence $D[x]$ is strongly right (left) bounded if and only if it is right (left) bounded. Consequently we have the following results.

Proposition 17. Let R be a sumple Artinaan rung. Then the followng statements are equivalent:
(1) Rix! as rught bounded.
(2) $R[x]$ is not rught promttuve.
(3) $R[x]$ is maximally rught bounded.

Proof. By Corollary 14 and Lemma 16.

Corollary 18. Let D be a division rang. Then the followng statements are equivalent:
(1) $D[x]$ is strongly right bounded.
(2) $D[x]$ is roght bounded.
(3) $D[x]$ is not rught promitive.
(4) $D[x]$ as maximally rught bounded.
(5) The left versions of the statements (1)-(4).

Proof. By Corollary 15, Proposition 17 and the argument prior to Proposition 17.

There exists a division ring that does not satisfy the statements in Corollary 18. Let R be the Weyl division algebra over a field of characteristic zero. Then $R[x]$ is right primitive by [6, Theorem 15.16].

References

11 F. W. Anderson and K R. Fuller, Rings and Categorzes of Modules, SprmgerVerlag New York, Inc (1992).
[2] H. Bass, Finatistic dimension and a generalization of semapromary rings, Trans Amer Math Soc 95 (1960), 466-488.
[3] G. F Birkenmeier, I. Y. Kirn and J. K Park, Regularity condutrons and the simplicaty of prame factor rings, J Pure Appl. Algebra 115 (1997), 213230
[4] G. F. Birkenmeler and R. P. Tucci, Homomorphac amages and the stngular adeal of a strongly rught bounded ring, Comm Algebra 16 (1988), 1099-1112
[5] J Cozzens and C. Fath, Simple Noetheman Rings, Cambridge liniversity Piess (1975).
[6] K. R. Goodearl and R B. Warfield, JR., An Introduction to Noncorntnutative. Noethertan Rings, Cambridge Unversity Press (1989)
[7] N. Jacobson, The Theory of Rangs, American Mathematical Socipty (1943)
$[8]$ Y Lee and C. Huh, On szngs an whach every maxamal one-suded adeal contanus a maximal deal, Comm Algebra 27 (8) (1999), 3969 . 3978
[9] H-P Yu, On quasz-duo rings, Glasgow Math J. 37 (1995), $21 \cdots 31$

Mi Hyang Kwon
Department of Mathematics Education
Pusan National Lniversity
Pusan 609-735, Korea

Chol On Kim and Chan Huh
Department of Mathematics
Pusan National University
Pusan 609-735, Korea
E-mall: chuh@hyowon.pusan.ac.kr

[^0]: Recesved Jamary 12, 2000.
 1991 Mathematics Subject Clansfication. 16D 15, 16D30, 16S 36.
 Key words and phrases Pimmtive ring, polynomal ring, maximal ideal and maximal one-sided ideal

 The second and thud named authors wete supported by the Reseatch Grant, Pusan National Unversity in 2000

