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HILBERT’S THEOREM 90 FOR NON-COMPACT GROUPS

Marat Rovinsky

Abstract. Let K be a field and G be a group of its automorphisms. It
follows from Speiser’s generalization of Hilbert’s Theorem 90, [10] that
any K-semilinear representation of the group G is isomorphic to a direct
sum of copies of K, if G is finite.

In this note three examples of pairs (K, G) are presented such that
certain irreducible K-semilinear representations of G admit a simple de-
scription: (i) with precompact G, (ii) K is a field of rational functions
and G permutes the variables, (iii) K is a universal domain over field of
characteristic zero and G its automorphism group. The example (iii) is
new and it generalizes the principal result of [7].

1. Introduction

1.1. Motivation

This is a revised version of my talk, motivated by a problem on birational in-
variants of motivic nature, admitting a translation into representation-theoretic
terms.

The problem on birational invariants, which is a consequence of the filtration
conjecture due to S. Bloch and A. Beilinson, asks to show that ifHi(X,OX) = 0
for a smooth projective complex variety X, an integer s ≥ 0 and all i ≥ s
then there exists a smooth projective s-dimensional variety Z and a morphism
Z → X inducing a surjection CH0(Z) −→→ CH0(X).

It is shown in [9, Corollary 3.2] that this problem can be reduced to a
description of certain irreducible representations of certain topological groups.
More precisely, the goal is to show that such representations are contained in
an explicit representation Ω•F |k, cf. §3.

In fact, this explicit representation Ω•F |k is a semilinear representation. And
we are going to use semilinear representations as a tool to study usual repre-
sentations.

The group here is an example of permutation group.
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Definition 1.1. A permutation group is a Hausdorff topological group G ad-
mitting a base of open subsets consisting of the left and right shifts of sub-
groups.

If we denote by B a collection of open subgroups such that the finite inter-
sections of conjugates of elements of B form a base of open neighbourhoods of
1 in G (e.g., the set of all open subgroups of G), then G acts faithfully on the
set Ψ :=

∐
U∈B G/U , so (i) G becomes a permutation group of Ψ, (ii) the left

or right translates of the pointwise stabilizers GT of the finite subsets T ⊂ Ψ
form a base of the topology of G. Clearly, G is totally disconnected.

1.2. Semilinear representations

Let K be a field and G be a group of its automorphisms. Then G becomes
a Hausdorff group when we take the left (equivalently, the right) translates of
the pointwise stabilizers GT ⊆ G of finite subsets T of K as a base of open
subsets of G.

For an abelian group A and a set S we denote by A[S] the direct sum
of copies of A indexed by S. In some cases, A[S] will be endowed with an
additional structure, e.g., of a module, a ring, etc.

A K-semilinear representation of G is a K-vector space V endowed with
an additive semilinear G-action: g(fv) = gf · gv for any g ∈ G, f ∈ K,
v ∈ V . This is the same as a left K〈G〉-module, where K〈G〉 denotes the
unital associative subring in EndZ(K[G]) generated by the natural left action
of K and the diagonal left action of G on K[G]. In other words, K〈G〉 is the
ring of K-valued measures on G with finite support. Then K〈G〉 is a central
algebra over the fixed field KG.

More explicitly, the elements of K〈G〉 are the finite formal sums
∑N
i=1 ai[gi]

for all integer N ≥ 0, ai ∈ K, gi ∈ G. Addition is defined obviously; multipli-
cation is a unique distributive one such that (a[g])(b[h]) = abg[gh], where we
write ah for the result of applying of h ∈ G to a ∈ K.

For an abelian group A and a set S we denote by A[S] the direct sum
of copies of A indexed by S. In some cases, A[S] will be endowed with an
additional structure, e.g., of a module, a ring, etc.

A G-action on a set is called smooth if this G-action is continuous when the
set is endowed with the discrete topology (i.e., the stabilizers are open).

Lemma 1.2. Let G be a group of automorphisms of a field K. Then the
category of smooth K-semilinear representations of the group G is “simple” in
the sense that all nonzero subcategories in it, closed under direct products and
subquotients, are equivalent.

Proof. Let V be a nonzero smooth K-semilinear representation of G. The
semilinear representations K[G/GT ] for all finite subsets T ⊆ K such that
V GT 6= 0 form a system of generators of the category of smooth K-semilinear
representations of the group G, so it suffices to show that there is an embedding
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of K[G/GT ] into a direct product of copies of V , or equivalently, that there is
a family of morphisms K[G/GT ]→ V with the vanishing common kernel.

Fix a nonzero morphism α ∈ HomK〈G〉(K[G/GT ], V ) and consider, for all
t ∈ KGT , the morphisms tα : K[G/GT ] → V , [σ] 7→ σt · α([σ]). Let ξ =∑N
i=1 aiσi ∈ K[G/GT ] be an element in the common kernel of the morphisms

tα. The elements of the set G/GT can be considered as (pairwise distinct)
K×-valued characters of the group (KGT )×, since GKGT = GT , so the element
ξ can be considered as a K-linear relation between characters. Due to the
linear independence of such characters, one has a1 = · · · = aN = 0, i.e.,⋂
t∈(KGT )× ker(K[G/GT ] tα−→ V ) = 0. �

1.3. Examples considered in this note

I am going to present two examples and a half of groups G admitting such
fields K endowed with a smooth G-action (called G-fields for brevity) that the
smooth irreducible K-semilinear representations of G can be described explic-
itly.

The first example of G is an arbitrary precompact group (i.e., any open
subgroup of G is of finite index). The second example of G is the infinite
symmetric groups acting on rational functions by permuting the variables. In
all these examples, the isomorphism classes of the irreducible objects turn out
to be one-dimensional as K-vector spaces.

In the remaining half-example, the group is as it is supposed to be in the
original geometric problem of §1.1, but the considered semilinear represen-
tations satisfy an extra restriction (an appropriate replacement of the finite
dimensionality).

2. Speiser’s and further generalizations of Hilbert’s theorem 90

Speiser’s generalization of Hilbert’s theorem 90 ([10, Satz 1]) can be gener-
alized further as follows.

Theorem 2.1. Let G be a permutation group and K be a field endowed with a
smooth G-action. Then the object K is a generator of the category of smooth
K-semilinear representations of G if and only if G is precompact and the G-
action on K is faithful.

Proof. If G is a precompact automorphism group of K, V is a smooth K-
semilinear representations of G and v ∈ V then the intersection H of all con-
jugates of the stabilizer of v in G is of finite index. Thus, v is contained in
the KH -semilinear representation V H of the finite group Ḡ := G/H. It is [10,
Satz 1], appropriately reformulated, that any KH -semilinear representation of
Ḡ is isomorphic to a direct sum of copies of KH . Namely, the natural Ḡ-action
on KH gives rise to a KG-algebra homomorphism KH〈Ḡ〉 → EndKG(KH),
which is (a) surjective by Jacobson’s density theorem and (b) injective by in-
dependence of characters. Then the field extension KH |KG is finite and any
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KH〈Ḡ〉-module is isomorphic to a direct sum of copies of KH . As G/H is
finite, V H = (V H)G/H ⊗(KH)G/H KH = V G ⊗KG KH , i.e., v is contained in a
subrepresentation isomorphic to a direct sum of copies of K.

If G is not precompact then it admits an open subgroup U ⊂ G of infinite
index, while the representation K[G/U ] of G has no nonzero vectors fixed by
G, so K[G/U ] is not a direct sum of copies of K. (For a G-set S we consider
K[S] as a K-vector space with the diagonal G-action.) For any non-identical
g ∈ G there is an open subgroup U 63 g. Then g acts non-trivially on K[G/U ],
so it acts non-trivially on K if K[G/U ] is isomorphic to a direct sum of copies
of K. �

Fix now a field k and a permutation group G. As it follows from Theorem
2.1, for any field K endowed with a smooth G-action the object K is not a
generator of the category of smooth K-semilinear representations of G if G is
not precompact. One may ask, however, the following:

Question 2.2. Does there exist aG-field extensionK|k (a ‘smooth period field’
over k) such that K is a cogenerator of the category of smooth K-semilinear
representations of G and KG = k?

Remark 2.3. Let K ′ ⊆ K be a G-invariant subfield and U be an open subgroup
of G. Then the forgetful functor from the category of smooth K-semilinear
representations of G to the category of smooth K ′-semilinear representations
of U (i) admits a left adjoint K〈G〉 ⊗K′〈U〉 (−), (ii) preserves cogenerators and
injectives.

Lemma 2.4 provides an evident necessary condition on the fieldK in question
2.2, while Lemma 2.5 constructs fields satisfying the condition of Lemma 2.4
for arbitrary permutation groups G.

Lemma 2.4. Let G be a permutation group and K be a field endowed with a
smooth G-action. Suppose that K is a cogenerator of the category of smooth
K-semilinear representations of G. Then the G-action on K is faithful and for
any open subgroup U ⊆ G one has U = GKU .

Proof. For any open subgroup U ⊆ G the K〈G〉-module K[G/U ] can be em-
bedded into a product of copies of K, so stabilizer U of the element of [1] is an
intersection of stabilizers of some elements of K, i.e., the pointwise stabilizer
of a subfield of K. �

For a field k and a set S, denote by k(S) the field of rational functions over
k in the variables enumerated by the set S.

The next result is well-known for profinite groups G.

Lemma 2.5. For any field k and any permutation group G there exists a field
extension K|k endowed with a smooth G-action such that for any open subgroup
U ⊆ G one has U = GKU .
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Proof. Let {Hi | i ∈ I} be such a set of open subgroups of G that any open
subgroup of G is conjugated to some Hi. Set S :=

∐
i∈I G/Hi and K := k(S).

For any subgroup U ⊆ G one has GKU ⊇ U and SU ⊂ KU . On the other
hand, any open subgroup U ⊆ G coincides with hHih

−1 for some i ∈ I and
h ∈ G, so [h]i := h mod Hi ∈ SU , and therefore, if g ∈ GKU , then g[h]i = [h]i,
which is possible if and only if gUh = Uh, i.e., if and only if g ∈ U . �

2.1. Hilbert’s theorem 90 for symmetric groups

Denote by SΨ the group of all permutations of an infinite set Ψ. In this
section we give an affirmative answer to the question 2.2 for G = SΨ.

As SΨ is topologically simple, any non-trivial smooth SΨ-action on a field
K is faithful and the fixed field k := KSΨ is algebraically closed in K.

The group SΨ acts on the field of rational functions k(Ψ) by permuting the
variables.

For each d ∈ Z, let Vd ⊆ k(Ψ) be the subset of homogeneous rational
functions of degree d, so V0 is an SΨ-invariant subfield and Vd ⊆ k(Ψ) is an
SΨ-invariant one-dimensional V0-vector subspace.

Theorem 2.6 ([8]). Let Ψ be a set.
(1) Let k be a field and let K ⊆ k(Ψ) be an SΨ-invariant subfield. Then

the object k(Ψ) is an injective cogenerator of the category of smooth
K-semilinear representations of SΨ.

In particular, (i) any smooth K-semilinear representation of SΨ can
be embedded into a direct product of copies of k(Ψ); (ii) any smooth
k(Ψ)-semilinear representation of SΨ of finite length is isomorphic to
a direct sum of copies of k(Ψ).

(2) The objects Vd for d ∈ Z form a system of injective cogenerators of
the category of smooth V0-semilinear representations of SΨ, i.e., any
smooth V0-semilinear representation V of SΨ can be embedded into a
direct product of cartesian powers of Vd. In particular, any smooth
V0-semilinear representation of SΨ of finite length is isomorphic to⊕

d∈Z V
m(d)
d for a unique function m : Z→ Z≥0 with finite support.

(3) Let K ⊂ k(Ψ) be the subfield generated over k by the rational functions
x−y for all x, y ∈ Ψ, so the group SΨ acts naturally on the fields k(Ψ)
and K. Then for each integer N ≥ 1 there exists a unique isomorphism
class of smooth K-semilinear indecomposable representations of SΨ of
length N . In particular, any smooth K-semilinear irreducible represen-
tation of SΨ is isomorphic to K.

Remark 2.7. In fact, ‘smooth period fields’ (from Question 2.2) are not unique.
For instance, Theorem 2.6(1) is valid when the field k(Ψ) is replaced by the
following, more general, field extension FΨ|k: for any field extension F |k of
at most countable transcendence degree such that k is algebraically closed in
F , let FΨ = Fk,Ψ be the field of fractions of the inductive limit k-algebra
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k, i∈Ψ F := lim−→

I⊂Ψ

⊗
k, i∈I F of the tensor powers

⊗
k, i∈I F over k for all

finite subsets I ⊂ Ψ, consisting of finite linear combinations of tensor products
of elements in F , almost all equal to 1. The group SΨ acts on

⊗
k, i∈Ψ F

by permuting the tensor factors, and thus, it acts on the field FΨ. The field
FΨ coincides with k(Ψ), if F = k(x) is the field of rational functions in one
variable.

Proof of Theorem 2.6 (sketch). Proof of part (1) splits into several steps. The
goal of the first three steps is to show that any smooth simple L〈SΨ〉-module
is isomorphic to L, where L := k(Ψ).

Step 1. An explicit description of restriction of any smooth finitely generated
L〈SΨ〉-module M to L〈SΨ|J〉 for a sufficiently big finite subset J ⊂ Ψ: M ∼=⊕N

s=0 L[
(ΨrJ

s

)
]κs for some integer N,κ0, . . . , κN ≥ 0. Here

(Ψ
s

)
denotes the

set of all subsets of Ψ of cardinality s. Proof proceeds by induction on (N,m),
where M is dominated by a L〈SΨ〉-module L[

(Ψ
N

)
]m⊕

⊕N−1
s=0 L[

(Ψ
s

)
]ms for some

N,m,ms ≥ 0.
Step 2. Sending M to M ′ := lim−→

I⊂ΨrJ
MSΨ|I gives rise to an equivalence

of categories of smooth L〈SΨ〉-modules and smooth L′〈SΨ|J〉-modules, where
L′ = k(Ψ r J). In particular, any smooth simple L〈SΨ〉-module M admits a
simple L′〈SΨ|J〉-submodule M ′. This is based on identification of the smooth
SΨ-sets with the sheaves on a category of finite subsets. Then M and M ′

correspond to the restrictions of a sheaf to finite subsets of Ψ and of Ψ r J ,
respectively.

Step 3. It not hard to show that there are no simple L′〈SΨ|J〉-submodules
in L[

(ΨrJ
s

)
] for s > 0, so M ∼= Lm, and thus, M ′ embeds into L. Specializing

the variables in J of a generator Q = Q(J) ∈ L× = L′(J)× of M ′, one gets an
isomorphism M ′

∼−→ L′, so M is isomorphic to L.
Step 4. L is injective, i.e., any essential extension E of L coincides with L.

Indeed, we may assume that E is cyclic. By Step 1, there is a finite subset
J ⊂ Ψ such that the L〈SΨ|J〉-module E is isomorphic to

⊕N
s=0 L[

(ΨrJ
s

)
]κs for

some integer N,κ0, . . . , κN ≥ 0. According to Step 2, E′ is a cyclic L′〈SΨ|J〉-
submodule of

⊕N
s=0 L[

(ΨrJ
s

)
]κs which is an essential extension of L′. The

natural projection defines a morphism of L′〈SΨ|J〉-modules E′ → Lκ0 injective
on L′ ⊆ E′. Composing it with any L-linear morphism Lκ0 → L, which is
L′-rational and identical on the image of L′, we get a morphism of L′〈SΨ|J〉-
modules π : E′ → L. It remains to show that L′ is a direct summand of L. This
can be seen by sending elements of J to Laurent series in k((t)) algebraically
independent over k, so L becomes embedded into L′((t)) and the constant term
of the Laurent series is a desired splitting.

Step 5. We have to show that for any smooth simple L〈SΨ〉-module V
and any nonzero v ∈ V there is a morphism V → L non-vanishing at v. The
L〈SΨ〉-submodule 〈v〉 of V generated by v admits a simple quotient, which is
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just shown to be isomorphic to L, i.e., there is a nonzero morphism ϕ : 〈v〉 → L.
As L is injective, ϕ extends to V .

(2) By part (1), k(Ψ) is an injective cogenerator of the category of smooth
V0〈SΨ〉-modules. To show that the subobjects Vd ⊂ k(Ψ) form a system of
injective generators, it suffices to verify that they are direct summands of k(Ψ)
and that k(Ψ) embeds into

∏
d∈Z Vd.

There is a unique discrete valuation v : k(Ψ)× → Z trivial on V ×0 and such
that v(x) = −1 for some (equivalently, any) x ∈ Ψ. The valuation v is SΨ-
invariant and completion of k(Ψ) with respect to v is isomorphic to the field of
Laurent series V0((x−1)) = lim−→

n

∏
d≤n V0 · xd = lim−→

n

∏
d≤n Vd ⊂

∏
d∈Z Vd, so for

each d ∈ Z there is a morphism of V0〈SΨ〉-modules k(Ψ) → Vd splitting the
inclusion Vd ⊂ k(Ψ). This implies that all Vd are direct summands of k(Ψ),
and thus, they are injective.

(3) By part (1), any smooth simple K〈SΨ〉-module can be embedded into
k(Ψ). Let us show that any simple K〈SΨ〉-submodule V ⊂ k(Ψ) coincides
with K.

Fix some x ∈ Ψ. One has k(Ψ) = K[x] ⊕
⊕

R VR, where R runs over the
SΨ-orbits of non-constant irreducible monic polynomials in K[x] and VR is the
K-linear envelope of P (x)/Qm for all Q ∈ R, integer m ≥ 1 and P ∈ K[x]
with degP < m degR. Clearly, this decomposition is independent of x. It is
straightforward that the only K〈SΨ〉-submodule K[x] of length N consists of
all polynomials in x of minimal degree < N .

It is not hard to show that there are no simple submodules in VR for any
R. Thus, any smooth K〈SΨ〉-module V of finite length is embeds into a finite
cartesian power of K[x]. Then one concludes that for any integer N ≥ 1 the
unique isomorphism class of smooth K-semilinear indecomposable representa-
tions of SΨ of length N is presented by

⊕N−1
j=0 xjK ⊂ k(Ψ) for any x ∈ Ψ. �

Remark 2.8. Parts (1) and (2) of Theorem 2.6 provide an example of a permu-
tation group G, an open subgroup U ⊆ G and a field K endowed with a smooth
G-action such that K is a cogenerator of the category of smooth K-semilinear
representations of U , but K is not a cogenerator of the category of smooth
K-semilinear representations of G, if we take G = SΦ, U the stabilizer of an
element of Φ and K as in Theorem 2.6(2).

3. Admissible semilinear representations of automorphism groups
of universal domains

For any field extension K|k denote by GK|k its automorphism group. Now
let k be a field of characteristic zero and F be an algebraically closed field
extension of countable transcendence degree.

An F -semilinear representation V of GF |k is called admissible if dimFU V U <
∞ for any open subgroup U ⊆ GF |k.



1764 M. ROVINSKY

The following result generalizes to the case of arbitrary k a consequence of
[7, Theorem 4.10] in the case of k = Q:

Theorem 3.1. Any irreducible F -semilinear admissible representation of GF |k
is a direct summand of the tensor algebra

⊗•
F Ω1

F |k.

To certain extent, admissible semilinear representations of the automorphism
group GF |k of a universal domain F over k are analogous to such notions in
algebraic geometry as invariant sheaves of M. Kashiwara, [4], and functors of D.
B. A. Epstein, [2] and [3] (originating from J. W. Milnor’s problem on “natural”
vector bundles on differentiable manifolds).

3.1. Strategy of the proof of Theorem 3.1

Proof is a modified version of [7].
To describe the admissible semilinear representations of the automorphism

group GF |k of a universal domain F over k, one studies first their ‘restrictions’
to projective groups Gn, considered as subquotients of the group GF |k, for all
n ≥ 1. More precisely, one studies the full subcategory SLn of the category
of Kn-semilinear representations of Gn, whose objects are restrictions of non-
degenerate finite-dimensional Kn-semilinear representations of the semigroup
of dominant rational self-maps of Pnk , generated by Gn and the semigroup
Enddom(Yn|k) ∼= Matdet6=0

n×n Z n Tn of dominant endomorphisms of Yn, to the
subgroup Gn. (The reason to deal with such a semigroup is that Enddom(Yn|k)
is a subquotient of the group GF |k, and thus, Vn := V GF |Kn ∈ SLn for any
admissible semilinear representation V of GF |k.)

Let SLun be the category of the finite-dimensional Kn-semilinear represen-
tations of the group Gn, whose restrictions to the maximal torus Tn in Gn
is isomorphic to Kn ⊗k W for a unipotent representation W of the torus Tn
(where Tn is considered as a discrete group). This means that W is a finite-
dimensional k-vector space, admitting a Tn-invariant filtration with the trivial
Tn-action on the graded quotients of that filtration. Clearly, SLun is an abelian
and neutral tannakian category, while H0(T tors

n ,−) : SLun −→ Veck is a fibre
functor.

One says that a sheaf V on Pnk is a Gn-sheaf if it is endowed with a Gn-
structure, i.e., with a compatible collection of isomorphisms (satisfying the
chain rule) αg : V ∼−→ g∗V for each g ∈ Gn, i.e., such that αhg = g∗αh ◦ αg for
all g, h ∈ Gn.

One proves that for any integer n ≥ 2 one has an inclusion SLn ⊆ SLun,
and construct a fully faithful tensor functor

(1) SLun
Sn−→ {coherent Gn-sheaves on Pnk},

whose composition with the generic fibre functor is the identical full embed-
ding of SLun into {finite-dimensional semilinear Kn-representations of Gn} as
a Serre subcategory.
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The next step is to identify simple objects of SLun with generic fibres of
Gn-equivariant coherent sheaves on Pnk . In the proofs one uses a description of
‘abstract’ homomorphisms to reductive groups with Zariski dense images, due
to A. Borel and J. Tits ([1]).

It is well-known that any simple Gn-equivariant coherent sheaf on Pnk is a

direct summand of the sheaf HomOPn
k

((ΩnPn
k
|k)
⊗i
OPn

k ,
⊗•
OPn

k

Ω1
Pn

k
|k) for an appro-

priate i ≥ 0.
In [7, Theorem 2.4] one shows that certain simple objects of SLun do not

occur as subquotients of admissible semilinear GF |k-representation:

Theorem 3.2. For any F -semilinear admissible GF |k-representation V any
irreducible subquotient of the Kn-semilinear PGLn+1k-representation Vn :=
V GF |Kn is a direct summand of

⊗•
Kn

Ω1
Kn|k.

One shows that the category A of admissible F -semilinear representations
of GF |k is abelian, that the functor A −→ SLun, V 7→ Vn, is exact, and the
groups Ext1 between the simple object of the category SLnu are calculated. For
example, there exists a non-trivial extension of Ω1

Kn|k by Kn if and only if k is
transcendental over Q, and in that case they are parametrized by k-hyperplanes
H ⊂ Ω1

k: 0 −→ Kn
v·−→ Ω1

Kn
/H⊗k Kn −→ Ω1

Kn|k −→ 0, where v ∈ Ω1
k/H ∼= k

is a nonzero element. (Note, that the coherent Gn-sheaves Sn(Ω1
Kn
/H⊗k Kn)

are not equivariant.) The calculation of Ext1 uses a description of certain
‘abstract’ homomorphisms to the groups with commutative unipotent radical,
due to L. Lifschitz and A. Rapinchuk ([5]). This implies, in particular, that if
a V ∈ A admits no subobjects isomorphic to F , then any simple subquotient
of Vn ∈ SLun is a direct summand of

⊗≥1
Kn

Ω1
Kn|k.

After establishing the principal structural results concerning the category
A, the category A is identified with the category of ‘coherent’ sheaves in the
smooth topology, when k = Q.

Namely, for any object V of A and any smooth k-variety Y embeddings of
generic points of Y into F gives rise to a locally free coherent sheaf VY on Y .
Any dominant morphism X

π−→ Y of smooth k-varieties induces an embedding
of coherent sheaves π∗VY ↪→ VX , which is an isomorphism if π is étale.

This is where an equivalence S : A ∼−→ {‘coherent’ sheaves in the smooth
topology}, V 7−→ (Y 7→ VY (Y )), comes from. Slightly more generally, ‘coher-
ent’ sheaves are contained in the category F l of flat ‘quasicoherent’ sheaves in
the smooth topology. For any flat ‘quasicoherent’ sheaf V in the smooth topol-
ogy the space Γ(Y,VY ) is a birational invariant of a proper Y . This gives rise
to a left exact functor Γ from F l to the category of smooth k-representations of
GF |k, given by V 7→ lim−→Γ(Y,VY ), where Y runs over the smooth proper models
of the subfields in F of finite type over k.

The functor Γ ◦ S is faithful, since Γ(Y ′,VY ′) generates the (general fibre of
the) sheaf VY ′ for appropriate finite covers Y ′ of Y , if V is ‘coherent’. However,
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it is not full and the objects in its image are ‘very’ reducible. If Γ(Y,VY ) has
Galois descent property, then Γ(V ) is admissible. However, the Galois descent
property does not hold in general.

3.1.1. Inclusion SLn ⊆ SLun. Let k∞ := ∪j≥0kj , where k0 = Q and kj+1 is
generated over Q by all roots in k of all elements of the field kj .

The first step in the proof of the inclusion SLn ⊆ SLun, is to show that
restriction of (an extension to the corresponding semigroup of) V ∈ SLn to
Zn6=0nTn, where Zn6=0 is the ‘maximal split torus’ in Matdet 6=0

n×n Z, comes from a k-
linear representation by extending coefficients to Kn. Some analytic arguments
(using the existence of all `-primary roots of unity in k) reduce the problem to a
local result, stating that any finite-dimensional k((t))-semilinear representation
of the semigroup N (acting on the field of formal Laurent series k((t)) by raising
the indeterminate to the corresponding powers p : t 7→ tp) is obtained from a
k-linear representation by extending coefficients to k((t)).

This implies that V 7−→ V T
tors
n is a ‘fibre functor’ to the category of unipo-

tent k-representations of Tn, i.e., V = V T
tors
n ⊗kKn, which shows the inclusion

SLn ⊆ SLun.

3.1.2. The functor Sn. In order to construct the functor Sn from (1), one has
to check that Sn(V )|Yn := H0(T tors

n , V ) ⊗k OYn ⊂ V happily glue together,
when Yn varies.

The principal step is to show that for any hyperplane H ⊂ Pnk r Yn (i.e.,
stabilized by the torus Tn) and any k∞-lattice U0 in the unipotent radical U of
the stabilizer P of the hyperplane H, the functor H0(U0,−) : V 7−→ V U0 from
SLun, this time to the category of unipotent k-representations of U , is a ‘fibre
functor’ as well. Then the OPn

k
(Pnk rH)-lattice VH in V , spanned by V U0 , is

P -invariant and independent of U0.
Localizing this lattice and varying H, we get a coherent Gn-subsheaf V of

the constant sheaf V on Pnk such that V|Yn
= V T

tors
n ⊗kOYn

= V U0 ⊗kOYn
and

Γ(Pnk rH,V) = VH .
One checks that if k = k∞, then the action of Gn on the total space E

of the vector bundle corresponding to the sheaf V comes from a morphism of
k-varieties Gn×kE −→ E, so that the functor Sn factors through the category
of Gn-equivariant coherent sheaves on Pnk , which is equivalent to the category
of rational representations (over k) of finite degree of the stabilizer of a point
of the space Pnk .

3.1.3. Fix a transcendence base x1, x2, x3, . . . of F |k and setKj:=k(x1, . . . , xj)
for each integer j ≥ 0.

Fix some integer m ≥ 0 and a rational irreducible representation B ∼=
Sλk (km) of GLmk := Affm/(Affm)u. Let W ◦ := {Km

/k
↪→ F}/(Affm)u be

considered as a left GF |k-set and a right GLmk-set. As any element of W ◦
is determined by its restriction to the k-vector space (Km/k)(Affm)u (and also



HILBERT’S THEOREM 90 FOR NON-COMPACT GROUPS 1767

by its restriction to the basis {x1, . . . , xm} of (Km/k)(Affm)u), one can consider
W ◦ as a subset of W := Homk((Km/k)(Affm)u , F/k) ∼= (F/k)m consisting of all
elements of W containing m algebraically independent elements in the image
(of all m-tuples with entries algebraically independent over k).

Let (y1, . . . , ym) 7→ [y1, . . . , ym] be the map W −→ {0} ∪W ◦ identical on
W ◦ and sending W \W ◦ to 0. Then [µy1, . . . , µym]⊗ b = µ|λ|[y1, . . . , ym]⊗ b in
U for any µ ∈ k. If y1, . . . , ym belong to the k-linear envelope of x1, . . . , xM for
some integer M ≥ 1, then [y1, . . . , ym]⊗b ∈ U (AffM )u

M is a weight |λ| eigenvector
of the centre of GLMk.

Let SLun be the category of finite-dimensional semilinear representations of
PGLn+1k over Kn whose restrictions to the maximal torus Tn in PGLn+1k are
isomorphic to Kn ⊗k W for unipotent representations W of Tn (where Tn is
considered as a discrete group).

Let SLeqn ⊂ SLun be the full subcategory consisting of generic fibres of
coherent PGLn+1k-equivariant sheaves on Pnk . It is equivalent to the category
of rational representations of the stabilizer of a point of Pnk .

According to [7, §1], the category SLun is abelian and its simple objects are
simple objects of SLeqn , i.e., direct summands of HomKn((ΩnKn|k)⊗M ,

⊗•
Kn

Ω1
Kn|k)

for appropriate integer M ≥ 0.
Let Qn be a k-vector space and X0, . . . , Xn be a base of the space Q∨n of

linear functionals with Xi/X0 and xi identified for 1 ≤ i ≤ n. Let Φ−1 be the
(one-dimensional) Kn-vector subspace of homogeneous elements of degree −1
in the field of the rational functions on Qn.
Lemma 3.3 ([7], Lemma 3.10). Let n ≥ 2. Suppose that Ext1

SLu
n
(Kn, V◦) 6= 0

for some irreducible object V◦ of SLun. Then either V◦ ∼= Ω1
Kn|k, or V◦ ∼=

Der(Kn|k). One has Ext1
SLu

n
(Kn,Ω1

Kn|k) = k (generated by the class

(2) 0→ Ω1
Kn|k

ι→ Q∨n ⊗k Φ−1
×→ Kn → 0, ι : f l0

l1
d
l1
l0
7→ l1 ⊗

f

l1
− l0 ⊗

f

l0

of the generic fibre of the Euler extension) and Ext1
SLu

n
(Kn,Der(Kn|k)) =

Der(k).
Lemma 3.4. For any V ∈ SLuM the representation V (AffM )u of GLMk is
rational (and thus, semisimple).
Sketch of the proof. By induction argument, one can reduce the problem to
the case of an extension between simple objects. In view of Lemma 3.3, the
problem reduces further to the case of extension (2) and the extension 0 →
KM

·η→ Ω1
KM

/KM · Λ→ Ω1
KM |k → 0 for a k-hyperplane Λ ⊂ Ω1

k and a nonzero
η ∈ Ω1

k/Λ. It is clear that (Q∨M ⊗k Φ−1)(AffM )u = {l ⊗ 1
l0
− l0 ⊗ l

l20
| l ∈

Q∨M} ⊕ k · l0 ⊗ 1
l0

and (Ω1
KM

/KM · Λ)(AffM )u = k · η. �

Lemma 3.5. Let A ⊂ B be a pair of finite-dimensional k-vector spaces and
λ be a finite partition (a Young diagram). Then any nonzero morphism ϕA,B
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from k[Autk(B)]⊗k[Autk(A,B)]S
λA to a rational representation of Autk(B) is a

composition of the natural morphism ψ : k[Autk(B)]⊗k[Autk(A,B)] S
λA→ SλB

with an injection.

Proof. Any rational representation of Autk(B) is a direct sum of representa-
tions of type SµB ⊗k (detB)⊗(−s) for partitions µ and integer s ≥ 0. One
has

Homk[Autk(A,B)](A⊗km, B⊗kn) = Homk[Autk(A)](A⊗km, A⊗kn)
⊆ Homk[k×](A⊗km, A⊗kn)

and this space vanishes, unless m = n, so

Homk[Autk(A,B)](SλA,SµB) = Homk[Autk(A)](SλA,SµA)

=
{
k, if µ = λ and SλA 6= 0,
0, if µ 6= λ or SλA = 0,

which means (by adjunction) that ϕA,B factors through ψ. �

Let WM◦ ⊂ WM be the subset consisting of M -tuples (y1, . . . , yM ) such
that

∑
i∈I yi ∈W ◦ for any non-empty subset I ⊆ {1, . . . ,M}.

Let k[WM◦] −→ k[W ◦]⊗k[k×]k(M) be the k-linear map sending (y1, . . . , yM )
to

〈y1, . . . , yM 〉 :=
∑

I⊆{1,...,M}

(−1)#I [
∑
i∈I

yi] ∈ k[W ◦]⊗k[k×] k(M).

Here k(M) denotes a one-dimensional k-vector space with k×-action by M -th
powers. As (y, . . . , y) is sent to∑

j≥0
(−1)j

(
M

j

)
jM [y] = (t d

dt
)M (1− t)M |t=1 · [y] = (−1)MM ! · [y],

it is surjective. Clearly, 〈y1, . . . , yM 〉 = 〈yθ(1), . . . , yθ(M)〉 for any permuta-
tion θ ∈ SM . Let Ũ := F [W |λ|◦] −→ U be the F -linear surjection sending
(y1, . . . , y|λ|) to 〈y1, . . . , y|λ|〉 ⊗ b.

Lemma 3.6 ([7], Lemma 4.3). Let the k-linear map α : k[W ◦] −→
⊗M

k W
be given by [w] 7→ w⊗M . Then α factors through k[W ◦] ⊗k[k×] k(M) and
〈y1, . . . , yM 〉 7→ (−1)M

∑
θ∈SM

yθ(1) ⊗ · · · ⊗ yθ(M) if (y1, . . . , yM ) ∈WM◦.

Lemma 3.7 ([7], Lemma 4.4). If M = |λ|, µ ∈ k, y0, y1, y0 + y1 ∈ W ◦ and
all coordinates of t2, . . . , tM ∈ W are algebraically independent over k(y0, y1),
then

〈y0 + y1, t2, . . . , tM 〉 ⊗ b ≡ 〈y0, t2, . . . , tM 〉 ⊗ b+ 〈y1, t2, . . . , tM 〉 ⊗ b mod kerϕ,

and 〈µy1, t2, . . . , tM 〉 ⊗ b ≡ µ〈y1, t2, . . . , tM 〉 ⊗ b mod kerϕ.
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Lemma 3.8 ([7], Lemma 4.5). Let (y1, . . . , yM ) ∈ {0}×W (M−1)◦ ∪WM◦ and
let the coordinates of tij ∈W ◦ be algebraically independent over k(y1, . . . , yM ),
where 1 ≤ i ≤M and 2 ≤ j ≤M . Set [0] := 0 and 〈0, y2, . . . , yM 〉 := 0. Then

〈y1, . . . , yM 〉 ⊗ b(3)

≡
∑

J⊆{2,...,M}

(−1)#J〈y1,
∑

s∈{1}∪J

ts2, . . . ,
∑

s∈{1}∪J

tsM 〉 ⊗ b

−
∑

∅6=I⊆{2,...,M}

(−1)#I〈y1, y2 +
∑
i∈I

t2i, . . . , yM +
∑
i∈I

tMi〉 ⊗ b mod kerϕ.

Lemma 3.9 ([7], Lemma 4.6). If M = |λ|, µ ∈ k and

(zj , y2, . . . , yM ), (
N∑
i=1

zi, y2, . . . , yM ), (µz1, y2, . . . , yM ) ∈WM◦

for all 1 ≤ j ≤ N , then

(4) 〈
N∑
j=1

zj , y2, . . . , yM 〉 ⊗ b ≡
N∑
j=1
〈zj , y2, . . . , yM 〉 ⊗ b mod kerϕ,

and 〈µz1, y2, . . . , yM 〉 ⊗ b ≡ µ〈z1, y2, . . . , yM 〉 ⊗ b mod kerϕ.

Lemma 3.10 ([7], Lemma 4.7). The k-linear map k[WM◦] −→
⊗M

k W , given
by [(y1, . . . , yM )] 7→ y1⊗· · ·⊗yM , is surjective and its kernel is spanned over k
by [(y0, . . . , yj−1 +yj , . . . , yM )]− [(y0, . . . , ŷj−1, . . . , yM )]− [(y0, . . . , ŷj , . . . , yM )]
and µ[(y1, . . . , yM )] − [(y1, . . . , µyj , . . . , yM )] for all y0, . . . , yM ∈ W ◦ and all
µ ∈ k×.

Let m = mF |k be the kernel of the multiplication map F ⊗k F
×−→ F . We

consider m as an ideal and as an F -vector space with F -multiplication via F⊗1.
The map F ⊗k (F/k) −→ m, given by

∑
j zj ⊗ yj 7→

∑
j zj ⊗ yj − (

∑
j zjyj)⊗ 1

is clearly an isomorphism of F -vector spaces.

Corollary 3.11. Let k|k0 be an extension of fields of characteristic 0, F |k
be an algebraically closed field extension and m be the kernel of the multi-
plication homomorphism F ⊗k0 F

×−→ F . Then any homomorphism ξ from
F ⊗k0

⊗M
k (F/k0) ∼=

⊗M
F m to any F -semilinear admissible representation V

factors through
⊗M

F (m/ms) for some s ≥ 1.

Proof. For each M ≥ 1, set HM := {σ ∈ G | σxi − xi ∈ k0, 1 ≤ i ≤
M}/GF |k(x1,...,xM ). For any x ∈ F set δx := x ⊗ 1 − 1 ⊗ x ∈ m, so (δx)s =∑s
j=0(−1)j

(
s
j

)
xs−j ⊗ xj ∈ ms. For any collection of integers s = (s1, . . . , sM ),

si ≥ 1, the element αs := (δx1)s1 ⊗ · · · ⊗ (δxM )sM ∈ (ms1 ⊗F · · · ⊗F msM )HM

M

has weight (s1, . . . , sM ) with respect to the torus {σ ∈ G | σxi/xi ∈ k×, 1 ≤
i ≤M}/GF |k(x1,...,xM ) ∼= (k×)M . In particular, the nonzero images in V (more
precisely, in VM ) of the elements αs are linearly independent over k. As VM
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is finite-dimensional, the k-vector space V HM

M is finite-dimensional as well, and
therefore, the image of the element αs in VM is zero for all but finite number
of s.

It is a little calculation done in [7, Lemma 4.8], that the element αs ∈
⊗M

F m
generates the F -semilinear subrepresentation ms1 ⊗F · · · ⊗F msM of G. This
implies that the homomorphism ξ factors through the quotient of

⊗M
F m by⊕M

i=1
⊗M−i

F m ⊗F · · · ⊗F ms ⊗F · · · ⊗F
⊗i−1

F m for some s ≥ 1, i.e., ξ factors
through

⊗M
F (m/ms) for some s ≥ 1. �

Proof of Theorem 3.1. Let V be an irreducible F -semilinear admissible repre-
sentation of GF |k. Fix any m ≥ 0 with a nonzero Vm := V GF |Km . As the
Km-semilinear representation Vm of PGLm+1k is finite-dimensional (and thus,
it is of finite length), it admits a simple subobject A. By Theorem 3.2, A is
isomorphic to SλKm

Ω1
Km|k for a partition λ. Clearly, A = B ⊗k Km, where

B := A(Affm)u ∼= (SλKm
Ω1
Km|k)(Affm)u ∼= Sλk (km) is a rational irreducible repre-

sentation of GLmk := Affm/(Affm)u.
Then there is a nonzero (and therefore, surjective) morphism of semilinear

representations U := F [W ◦]⊗k[GLmk] B
ϕ−→ V .

By Lemmas 3.9 and 3.10, V is a quotient of F⊗k
⊗M

k (F/k) for some M ≥ 0.
Then the conclusion follows from Corollary 3.11 and the identities mj/mj+1 =
Symj

F (m/m2) and m/m2 = Ω1
F |k. �
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