• Title/Summary/Keyword: atom transfer radical polymerization

Search Result 72, Processing Time 0.021 seconds

Synthesis and Characterization of Low Molecular Weight Poly(methyl acrylate)-b-Polystyrene by a Combination of ATRP and Click Coupling Method

  • Hasneen, Aleya;Kim, Su-Jeong;Paik, Hyun-Jong
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.541-546
    • /
    • 2007
  • The combination of atom transfer radical polymerization (ATRP) and click chemistry was employed for the efficient preparation of well-defined block copolymers. Bromo terminated poly(methyl acrylate) (pMA-Br) was prepared by an ATRP initiator, ethyl-2-bromoisobutyrate (EBiB). Subsequently, the bromine chain end of pMA-Br was converted to an azide group by simple nucleophilic substitution reaction. ${\alpha}-Alkyn-{\omega}-bromo-functionalized$ polystyrene was also synthesized by ATRP using the alkyn-functionalized initiator, propargyl-2-bromoisobutyrate (PgBiB). In both cases, the conversion was limited to a low level to ensure a high degree of chain end functionality. Then the coupling reaction between the azide end group in $pMA-N_3$ and alkyn-functionalized PgBiB-pSt was performed by Cu(I)catalysis. This coupling reaction was monitored by gel permeation chromatography (GPC). The synthesized block copolymer was characterized by FT-IR, $^1H-NMR$ spectroscopy and $^1H-^1H$ COSY correlation spectroscopy.

Influence of Quaternization on UCST Properties of Hydroxyl-Derivatized Polymers

  • Lee, Hyung-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3001-3004
    • /
    • 2014
  • A series of hydroxyl-derivatized quaternized polymers were successfully synthesized by atom transfer radical polymerization (ATRP) and Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide and alkynes (click chemistry), followed by quaternization reactions. ATRP was employed to synthesize poly(2-hydroxyethyl methacrylate) (PHEMA), followed by introduction of alkyne groups using pentynoic acid, leading to HEMA-Alkyne. 2-Azido-1-ethanol and 3-azido-1-propanol were combined with the HEMA-Alkyne backbone via click reaction, resulting in triazole-ring containing hydroxyl-derivatized polymers. Quaternization reactions with methyl iodide were conducted on the triazole ring of each polymer. Molecular weight, molecular weight distribution, and the degree of quaternization (DQ) were determined by gel permeation chromatography (GPC) and $^1H$ NMR spectroscopy. The average molecular weight ($M_n$) of the resulting polymers ranged from $5.9{\times}10^4$ to $1.05{\times}10^5g/mol$ depending on the molecular architecture. The molecular weight distribution was low ($M_w/M_n$ = 1.26-1.38). The transmission spectra of the 0.1 wt % aqueous solutions of the resulting quaternized polymers at 650 nm were measured as a function of temperature. Results showed that the upper critical solution temperature (UCST) could be finely controlled by the level of DQ.

Preparation and Characterization of Proton Conducting Composite Membranes From P(VDF-CTFE)-g-PSPMA Graft Copolymer and Heteropolyacid

  • Seo, Jin-Ah;Roh, Dong-Kyu;Koh, Jong-Kwan;Kim, Jong-Hak
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.20-25
    • /
    • 2008
  • Proton conducting composite membranes were prepared by solution blending of poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-poly(sulfopropyl methacrylate) (P(VDF-CTFE)-g-PSPMA) graft copolymer and heteropolyacid (HPA). The P(VDF-CTFE)-g-PSPMA graft copolymer was synthesized by atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of P(VDF-CTFE). FT-IR spectroscopy revealed that HPA nanoparticles were incorporated into the graft copolymer via hydrogen bonding interactions. The water uptake of membranes continuously decreased with increasing HP A concentration up to 45wt%, after which it slightly increased. It is presumably due to the decrease in number of water absorption sites due to hydrogen bonding interaction between the HP A particles and the polymer matrix. The proton conductivity of membranes increased with increasing HPA concentration up to 45wt%, resulting from both the intrinsic conductivity of HP A particles and the enhanced acidity of the sulfonic acid of the graft copolymer.

Preparation and Characterization of Proton Conducting Membranes by Blending PVC-g-PHEA and PVA

  • Koh, Jong-Kwan;Choi, Jin-Kyu;Seo, Jin-Ah;Zeng, Xiaolei;Kim, Jong-Hak
    • Korean Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • This work reports the preparation of proton conductive crosslinked polymer electrolyte membranes by blending poly(vinyl chloride)-g-poly(hydroxyl ethyl acrylate) (PVC-g-PHEA) and poly(vinyl alcohol) (PVA). The PHEA chains of the graft copolymer were crosslinked with PVA using sulfosuccinic acid (SA) via the esterification reaction between -OH of polymer matrix and -COOH of SA. The PVC-g-PHEA graft copolymer was synthesized via atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC backbones. Ion exchange capacity (IEC) continuously increased with increasing concentrations of SA, due to the increasing portion of charged groups in the membrane. However, the water uptake increased up to 20.0 wt% of SA concentration above which it decreased monotonically. The membrane exhibited a maximum proton conductivity of 0.026 S/cm at 20.0 wt% of SA concentration, which is presumably due to competitive effect between the increase of ionic sites and the crosslinking reaction.

Pore Size Control of a Highly Transparent Interfacial Layer via a Polymer-assisted Approach for Dye-sensitized Solar Cells

  • Lee, Chang Soo;Lee, Jae Hun;Park, Min Su;Kim, Jong Hak
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.392-399
    • /
    • 2019
  • A highly transparent interfacial layer (HTIL) to enhance the performance of dye-sensitized solar cells (DSSCs) was prepared via a polymer-assisted (PA) approach. Poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom-transfer radical polymerization (ATRP) and was used as a sacrificial template. The PVC-g-POEM graft copolymer induced partial coordination of a hydrophilic titanium isopropoxide (TTIP) sol-gel solution with the POEM domain, resulting in microphase separation, and in turn, the generation of mesopores upon calcination. These phenomena were confirmed using Fourier-transform infrared (FT-IR) spectroscopy, UV-visible light transmittance spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. The DSSCs incorporating HTIL60/20 (consisting of a top layer with a pore size of 60 nm and a bottom layer with a pore size of 20 nm) exhibited the best overall conversion efficiency (6.36%) among the tested samples, which was 25.9% higher than that of a conventional blocking layer (BL). DSSC was further characterized using the Nyquist plot and incident-photon to electron conversion efficiency (IPCE) spectra.

Anhydrous Crosslinked Polymer Electrolyte Membranes Based On ABA Triblock Copolymer (ABA 트리블록 공중합체를 이용한 무가습 가교형 고분자 전해질막)

  • Kim, Jong-Hak;Koh, Jong-Kwan;Lee, Do-Kyoung;Roh, Dong-Kyu;ShuI, Yong-Gun
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.228-236
    • /
    • 2009
  • ABA type triblock copolymer of poly(hydroxyl ethyl acrylate )-b-polystyrene-b-poly(hydroxyl ethyl acrylate), i.e. PHEA-b-PS-b-PHEA, was synthesized throughatom transfer radical polymerization (ATRP). This block copolymer was thermally crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification between the -OH groups of PHEA in block copolymer and the -COOH groups of IDA. Upon doping with ${H_3}{PO_4}$ to form imidazole-${H_3}{PO_4}$ complexes, the proton conductivity of membranes continuously increased with increasing ${H_3}{PO_4}$ content. The PHEA-b-PS-b-PHEA/IDA/${H_3}{PO_4}$ polymer membrane with [HEA]:[IDA]:[${H_3}{PO_4}$]=3:4:4 exhibited a maximum proton conductivity of 0.01 S/cm at $100^{\circ}C$ under anhydrous conditions. Thermal gravimetric analysis (TGA) shows that the PHEA-b-PS-b-PHEA/IDA/${H_3}{PO_4}$ complex membranes were thermally stable up to $350^{\circ}C$, indicating their applicability in fuel cells.

Current Research Trends on Surface Modification of Pressure-driven Membranes for Fouling Mitigation (압력 구동 기반 분리막의 막 오염 저감을 위한 표면 개질 방법 최신 연구 동향)

  • Jun, Byung-Moon;Lee, Hyung Kae;Kim, Woo Jeong;Park, Jihun;Kim, Jong Hyeok;Kwon, Young-Nam
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • Fresh water is an important resource for humans, and pressure-driven membrane technology has been widely known as an energy-efficient method to obtain water resource. However, membrane fouling phenomenon, which is one of the major issue during operation, deteriorates membrane permeability. These fouling is usually affected by interaction between surface of membrane and various foulants, therefore, modification of membrane's surface is one of the methods to improve fouling-resistance. This review focuses on the method to modify surface of pressure-driven membranes such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Specifically, there are two different surface modification methods: (1) adsorption and coating as the physical modification methods, (2) cross-linker, free radical polymerization (FRP), atom transfer radical polymerization (ATRP), plasma/UV-induced polymerization as the chemical modification methods. This review introduces the physico - chemical surface modification methods reported in recent papers and suggests research directions for membrane separation which can increase membrane fouling resistance.

Synthesis of Crosslinked Polystyrene-b-Poly(hydroxyethyl methacrylate)-b-Poly(styrene sulfonic acid) Triblock Copolymer for Electrolyte Membranes

  • Lee, Do-Kyoung;Park, Jung-Tae;Roh, Dong-Kyu;Min, Byoung-Ryul;Kim, Jong-Hak
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.325-331
    • /
    • 2009
  • The synthesis and the characterization of crosslinked ABC triblock copolymer, i.e. polystyrene-b-poly (hydroxyethyl methacrylate)-b-poly(styrene sulfonic acid), (PS-b-PHEMA-b-PSSA) is reported. PS-b-PHEMA-b-PSSA triblock copolymer at 20:10:70 wt% was sequentially synthesized via atom transfer radical polymerization (ATRP). The middle block was crosslinked by sulfosuccinic acid (SA) via the esterification reaction between -OH of PHEMA and -COOH of SA, as demonstrated by FTIR spectroscopy. As increasing amounts of SA, ion exchange capacity (IEC) continuously increased from 2.13 to 2.82 meq/g but water uptake decreased from 181.8 to 82.7%, resulting from the competitive effect between crosslinked structure and the increasing concentration of sulfonic acid group. A maximum proton conductivity of crosslinked triblock copolymer membrane at room temperature reached up to 0.198 S/cm at 3.8 w% of SA, which was more than two-fold higher than that of Nafion 117(0.08 S/cm). Transmission electron microscopy (TEM) analysis clearly showed that the PS-b-PHEMA-b-PSSA triblock copolymer is microphase-separated with a nanometer range and well developed to provide the connectivity of ionic PSSA domains. The membranes exhibited the good thermal properties up to $250^{\circ}C$ presumably resulting from the microphase-separated and crosslinked structure of the membranes, as revealed by thermal gravimetric analysis (TGA).

Proton Conducting Crosslinked Membranes by Polymer Blending of Triblock Copolymer and Poly(vinyl alcohol)

  • Lee, Do-Kyoung;Park, Jung-Tae;Choi, Jin-Kyu;Roh, Dong-Kyu;Lee, Jung-Hyun;Shul, Yong-Gun;Kim, Jong-Hak
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.549-554
    • /
    • 2008
  • Proton conducting crosslinked membranes were prepared using polymer blends of polystyrene-b-poly(hydroxyethyl acrylate)-b-poly(styrene sulfonic acid) (PS-b-PHEA-b-PSSA) and poly(vinyl alcohol) (PVA). PS-b-PHEA-b-PSSA triblock copolymer at 28:21:51 wt% was synthesized sequentially using atom transfer radical polymerization (ATRP). FT-IR spectroscopy showed that after thermal ($120^{\circ}C$, 2 h) and chemical (sulfosuccinic acid, SA) treatments of the membranes, the middle PHEA block of the triblock copolymer was crosslinked with PVA through an esterification reaction between the -OH group of the membrane and the -COOH group of SA. The ion exchange capacity (IEC) decreased from 1.56 to 0.61 meq/g with increasing amount of PVA. Therefore, the proton conductivity at room temperature decreased from 0.044 to 0.018 S/cm. However, the introduction of PVA resulted in a decrease in water uptake from 87.0 to 44.3%, providing good mechanical properties applicable to the membrane electrode assembly (MEA) of fuel cells. Transmission electron microscopy (TEM) showed that the membrane was microphase-separated with a nanometer range with good connectivity of the $SO_3H$ ionic aggregates. The power density of a single $H_2/O_2$ fuel cell system using the membrane with 50 wt% PVA was $230\;mW/cm^2$ at $70^{\circ}C$ with a relative humidity of 100%. Thermogravimetric analysis (TGA) also showed a decrease in the thermal stability of the membranes with increasing PVA concentration.

Synthesis of Well-Defined Block Copolymer Dispersants with (2-Dimethylamino)ethyl Methacrylate and Oligo(ethylene oxide)methyl Ether Methacrylate via ATRP for Dispersing Copper Phthalocyanine Pigment (Copper Phthalocyanine Pigment의 분산을 위한 (2-Dimethylamino)ethyl Methacrylate와 Oligo(ethylene oxide)methyl Ether Methacrylate를 포함하는 잘 규정된 블록 공중합체형 분산제의 원자 이동 라디칼 중합을 이용한 합성)

  • Kim, Eun-Hee;Kim, Bong-Soo;Jung, Ki-Suk;Kim, Jin-Goo;Paik, Hyun-Jong
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.104-110
    • /
    • 2012
  • The dispersion of pigment particles is important because it is capable of increasing the color strength, contrast, and transmittance of color-LCD products. Pigment dispersion properties are very important factors for the quality of LCD color filters. The chemical structure of polymeric dispersants for pigment is important to improve dispersion stability and prevent aggregation or flocculation of pigment in organic or aqueous systems. Polymeric dispersants should contain both anchoring group that interacts with pigment surface and stabilizing group that provides steric stabilization. Moreover, the molecular weight and composition of block copolymer have the an effect on pigment dispersion. In this study, adequate dispersants, block copolymers containing (2-dimethylamino)ethyl methacrylate as anchoring group and oligo(ethylene oxide)methyl ether methacrylate as a stabilizing group were designed and synthesized by atom transfer radical polymerization in order to prepare well-defined structure, molecular weight and composition.