Synthesis of Crosslinked Polystyrene-b-Poly(hydroxyethyl methacrylate)-b-Poly(styrene sulfonic acid) Triblock Copolymer for Electrolyte Membranes

  • Lee, Do-Kyoung (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Jung-Tae (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Roh, Dong-Kyu (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Min, Byoung-Ryul (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • Published : 2009.05.31

Abstract

The synthesis and the characterization of crosslinked ABC triblock copolymer, i.e. polystyrene-b-poly (hydroxyethyl methacrylate)-b-poly(styrene sulfonic acid), (PS-b-PHEMA-b-PSSA) is reported. PS-b-PHEMA-b-PSSA triblock copolymer at 20:10:70 wt% was sequentially synthesized via atom transfer radical polymerization (ATRP). The middle block was crosslinked by sulfosuccinic acid (SA) via the esterification reaction between -OH of PHEMA and -COOH of SA, as demonstrated by FTIR spectroscopy. As increasing amounts of SA, ion exchange capacity (IEC) continuously increased from 2.13 to 2.82 meq/g but water uptake decreased from 181.8 to 82.7%, resulting from the competitive effect between crosslinked structure and the increasing concentration of sulfonic acid group. A maximum proton conductivity of crosslinked triblock copolymer membrane at room temperature reached up to 0.198 S/cm at 3.8 w% of SA, which was more than two-fold higher than that of Nafion 117(0.08 S/cm). Transmission electron microscopy (TEM) analysis clearly showed that the PS-b-PHEMA-b-PSSA triblock copolymer is microphase-separated with a nanometer range and well developed to provide the connectivity of ionic PSSA domains. The membranes exhibited the good thermal properties up to $250^{\circ}C$ presumably resulting from the microphase-separated and crosslinked structure of the membranes, as revealed by thermal gravimetric analysis (TGA).

Keywords

References

  1. N. Venkatasubramanian, D. R. Dean, G. E. Price, and F. E. Arnold, High Perform. Polym., 9, 291 (1997) https://doi.org/10.1088/0954-0083/9/3/008
  2. W. J. Lee and S. H. Kim, Macromol. Res., 16, 247 (2008) https://doi.org/10.1007/BF03218860
  3. R. T. S. M. Lakshmi, J. Meier-Haack, K. Schlenstedt, H. Komber, V. Choudhary, and I. K.Varma, React. Funct. Polym., 66, 634 (2006) https://doi.org/10.1016/j.reactfunctpolym.2005.10.016
  4. B. Liu, G. P. Robertson, M. D. Guiver, Z. Shi, T. Navessin, and S. Holdcroft, Macromol. Rapid Commun., 27, 1411 (2006) https://doi.org/10.1002/marc.200600337
  5. J. Won, S. M. Ahn, H. D. Cho, J. Y. Ryu, H. Y. Ha, and Y. S. Kang, Macromol. Res., 15, 459 (2007) https://doi.org/10.1007/BF03218814
  6. R. T. S. M. Lakshmi, M. K. Vyas, A. S. Brar, and I. K. Varma, Eur. Polym. J., 42, 1423 (2006) https://doi.org/10.1016/j.eurpolymj.2006.01.002
  7. J. Li, C. H. Lee, H. B. Park, and Y. M. Lee, Macromol. Res., 14, 438 (2006) https://doi.org/10.1007/BF03219107
  8. H. J. Kim, M. H. Litt, S. Y. Nam, and E. M. Shin, Macromol. Res., 11, 458 (2003) https://doi.org/10.1007/BF03218976
  9. D. S. Kim, M. D. Guiver, M. Y. Seo, H. I. Cho, D. H. Kim, J. W. Rhim, G. Y. Moon, and S. Y. Nam, Macromol. Res., 15, 412 (2007) https://doi.org/10.1007/BF03218807
  10. J. H. Son, Y. S. Kang, and J. Won, J. Membr. Sci., 281, 345 (2006) https://doi.org/10.1016/j.memsci.2006.04.001
  11. J. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I.-H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn, Macromolecules, 36, 3228 (2003) https://doi.org/10.1021/ma034014b
  12. J. H. Chen, M. Asano, T. Yamaki, and M. Yoshida, J. Power Source, 158, 69 (2006) https://doi.org/10.1016/j.jpowsour.2005.09.024
  13. Y. Yin, S. Hayashi, O. Yamada, H. Kita, and K. Okamoto, Macromol. Rapid Commun., 26, 696 (2005) https://doi.org/10.1002/marc.200500014
  14. D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, Solid State Ionics, 176, 117 (2005) https://doi.org/10.1016/j.ssi.2004.07.011
  15. K. Bouzek, S. Moravcova, Z. Samec, and J. Schauer, J. Electrochem. Soc., 150, E329 (2003) https://doi.org/10.1149/1.1572484
  16. J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, Sep. Pur. Tech., 41, 207 (2005) https://doi.org/10.1016/j.seppur.2004.07.018
  17. A. Taeger, C. Vogel, D. Lehmann, W. Lenk, K. Schlenstedt,and J. Meier-Haack, Macromol. Symp., 210, 175 (2004) https://doi.org/10.1002/masy.200450620
  18. A. Taeger, C. Vogel, D. Lehmann, D. Jehnichen, H. Komber, J. Meier-Haack, N. A. Ochoa, S. P. Nunes, and K. V. Peinemann, React. Funct. Polym., 57, 77 (2003) https://doi.org/10.1016/j.reactfunctpolym.2003.10.001
  19. Y. Chen, D. Liu, Q. Deng, and X. He, J. Polym. Sci. Part A: Polym. Chem., 44, 3434 (2006) https://doi.org/10.1002/pola.21456
  20. A. Hasneen, S. J. Kim, and H. J. Paik, Macromol. Res., 15, 541 (2007) https://doi.org/10.1007/BF03218828
  21. J. H. Kim, J. Won, and Y. S. Kang, J. Polym. Sci. Part B: Polym. Phys., 42, 2263 (2004) https://doi.org/10.1002/polb.20106
  22. J.-W. Rhim, H. B. Park, C.-S. Lee, J.-H. Jun, D. S. Kim, and Y. M. Lee, J. Membr. Sci., 238, 143 (2004) https://doi.org/10.1016/j.memsci.2004.03.030
  23. J. H. Kim, B. R. Min, K. B. Lee, J. Won, and Y. S. Kang, Chem. Commun., 2732 (2002)
  24. H. S. Huang, C. Y. Chen, S. C. Lo, C. J. Lin, S. J. Chen, and L. J. Lin, Appl. Surf. Sci., 253, 2685 (2006) https://doi.org/10.1016/j.apsusc.2006.05.048
  25. J. Ding, C. Chuy, and S. Holdcroft, Chem. Mater., 13, 2231 (2001) https://doi.org/10.1021/cm010144s