Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.10.3001

Influence of Quaternization on UCST Properties of Hydroxyl-Derivatized Polymers  

Lee, Hyung-Il (Department of Chemistry, University of Ulsan)
Publication Information
Abstract
A series of hydroxyl-derivatized quaternized polymers were successfully synthesized by atom transfer radical polymerization (ATRP) and Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide and alkynes (click chemistry), followed by quaternization reactions. ATRP was employed to synthesize poly(2-hydroxyethyl methacrylate) (PHEMA), followed by introduction of alkyne groups using pentynoic acid, leading to HEMA-Alkyne. 2-Azido-1-ethanol and 3-azido-1-propanol were combined with the HEMA-Alkyne backbone via click reaction, resulting in triazole-ring containing hydroxyl-derivatized polymers. Quaternization reactions with methyl iodide were conducted on the triazole ring of each polymer. Molecular weight, molecular weight distribution, and the degree of quaternization (DQ) were determined by gel permeation chromatography (GPC) and $^1H$ NMR spectroscopy. The average molecular weight ($M_n$) of the resulting polymers ranged from $5.9{\times}10^4$ to $1.05{\times}10^5g/mol$ depending on the molecular architecture. The molecular weight distribution was low ($M_w/M_n$ = 1.26-1.38). The transmission spectra of the 0.1 wt % aqueous solutions of the resulting quaternized polymers at 650 nm were measured as a function of temperature. Results showed that the upper critical solution temperature (UCST) could be finely controlled by the level of DQ.
Keywords
ATRP; Quaternized; Click reactions; UCST; Thermoresponsive;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rapoport, N. Prog. Polym. Sci. 2007, 32(8-9), 962-990.   DOI   ScienceOn
2 Bajpai, A. K.; Shukla, S. K.; Bhanu, S.; Kankane, S. Prog. Polym. Sci. 2008, 33(11), 1088-1118.   DOI   ScienceOn
3 Dimitrov, I.; Trzebicka, B.; Mueller, A. H. E.; Dworak, A.; Tsvetanov, C. B. Prog. Polym. Sci. 2007, 32(11), 1275-1343.   DOI   ScienceOn
4 Lee, H.-i.; Pietrasik, J.; Sheiko, S. S.; Matyjaszewski, K. Prog. Polym. Sci. 2010, 35(1-2), 24-44.   DOI   ScienceOn
5 Roy, D.; Cambre, J. N.; Sumerlin, B. S. Prog. Polym. Sci. 2010, 35(1-2), 278-301.   DOI   ScienceOn
6 Schmaljohann, D. Adv. Drug Delivery Rev. 2006, 58(15), 1655-1670.   DOI   ScienceOn
7 Aoshima, S.; Kanaoka, S. Adv. Polym. Sci. 2008, 210, 169-208.
8 Seuring, J.; Agarwal, S. ACS Macro Letters 2013, 2(7), 597-600.   DOI   ScienceOn
9 Seuring, J.; Bayer, F. M.; Huber, K.; Agarwal, S. Macromolecules 2012, 45(1), 374-384.   DOI   ScienceOn
10 Seuring, J.; Agarwal, S. Macromol. Rapid. Comm. 2012, 33(22), 1898-920.
11 Hoogenboom, R.; Lambermont-Thijs, H. M. L.; Jochems, M. J. H. C.; Hoeppener, S.; Guerlain, C.; Fustin, C. A.; Gohy, J. F.; Schubert, U. S. Soft Matter 2009, 5(19), 3590-3592.   DOI   ScienceOn
12 Pagonis, K.; Bokias, G. Polymer 2004, 45(7), 2149-2153.   DOI   ScienceOn
13 Seuring, J.; Agarwal, S. Macromol. Chem. Phys. 2010, 211(19), 2109-2117.   DOI   ScienceOn
14 Shimada, N.; Ino, H.; Maie, K.; Nakayama, M.; Kano, A.; Maruyama, A. Biomacromolecules 2011, 12(10), 3418-3422.   DOI   ScienceOn
15 Jung, S.-H.; Song, H.-Y.; Lee, Y.; Jeong, H. M.; Lee, H.-i. Macromolecules 2011, 44(6), 1628-1634.   DOI   ScienceOn
16 Aoki, T.; Nakamura, K.; Sanui, K.; Kikuchi, A.; Okano, T.; Sakurai, Y.; Ogata, N. Polym. J. 1999, 31(11), 1185-1188.   DOI   ScienceOn
17 Glatzel, S.; Laschewsky, A.; Lutz, J. F. Macromolecules 2011, 44(2), 413-415.   DOI   ScienceOn
18 Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101(9), 2921-2990.   DOI   ScienceOn
19 Lutz, J.-F. Angew. Chem., Int. Ed. 2007, 46(7), 1018-1025.   DOI   ScienceOn
20 Wang, J.-S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117(20), 5614-15.   DOI
21 Sumerlin, B. S.; Vogt, A. P. Macromolecules 2010, 43(1), 1-13.   DOI   ScienceOn
22 Mishra, V.; Jung, S.-H.; Jeong, H. M.; Lee, H.-i. Polym. Chem. 2014, 5(7), 2411-2416.   DOI
23 Costa, R. O. R.; Freitas, R. F. S. Polymer 2002, 43(22), 5879-5885.   DOI   ScienceOn