Browse > Article

Anhydrous Crosslinked Polymer Electrolyte Membranes Based On ABA Triblock Copolymer  

Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Koh, Jong-Kwan (Department of Chemical and Biomolecular Engineering, Yonsei University)
Lee, Do-Kyoung (Department of Chemical and Biomolecular Engineering, Yonsei University)
Roh, Dong-Kyu (Department of Chemical and Biomolecular Engineering, Yonsei University)
ShuI, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.19, no.3, 2009 , pp. 228-236 More about this Journal
Abstract
ABA type triblock copolymer of poly(hydroxyl ethyl acrylate )-b-polystyrene-b-poly(hydroxyl ethyl acrylate), i.e. PHEA-b-PS-b-PHEA, was synthesized throughatom transfer radical polymerization (ATRP). This block copolymer was thermally crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification between the -OH groups of PHEA in block copolymer and the -COOH groups of IDA. Upon doping with ${H_3}{PO_4}$ to form imidazole-${H_3}{PO_4}$ complexes, the proton conductivity of membranes continuously increased with increasing ${H_3}{PO_4}$ content. The PHEA-b-PS-b-PHEA/IDA/${H_3}{PO_4}$ polymer membrane with [HEA]:[IDA]:[${H_3}{PO_4}$]=3:4:4 exhibited a maximum proton conductivity of 0.01 S/cm at $100^{\circ}C$ under anhydrous conditions. Thermal gravimetric analysis (TGA) shows that the PHEA-b-PS-b-PHEA/IDA/${H_3}{PO_4}$ complex membranes were thermally stable up to $350^{\circ}C$, indicating their applicability in fuel cells.
Keywords
atom transfer radical polymerization; block copolymer; crosslink; proton conductivity; anhydrous polymer electrolyte membrane;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 D. J. Kim, B.-J. Chang, C. K. Shin, J.-H. Kim, S.-B. Lee, and H.-J. Joo, 'Preparation and Characterization of Fluorenyl Polymer Electrolyte Membranes Containing PFCB Groups', Membrane Journal, 16, 16 (2006)   과학기술학회마을   ScienceOn
2 S. Unugur Celik, U. Akbey, A. Bozkurt, R. Graf, and H. W. Spiess, 'Proton-Conducting Properties of Acid-Doped Poly(glycidyl methacrylate)-1,2,4- Triazole Systems', Macromol. Chem. Phys., 209, 593 (2008)   DOI   ScienceOn
3 N. Cornet, G. Beaudoing, and G. Gebel, 'Influence of the structure of sulfonated polyimide membranes on transport properties', Sep. Purif. Technol., 22-23, 681 (2001)   DOI   ScienceOn
4 D. K. Lee, Y. W. Kim, J. K. Choi, B. R. Min, and J. H. Kim, 'Preparation and characterization of proton conducting crosslinked diblock copolymer membranes', J. Appl. Polym. Sci., 107, 819 (2008)   DOI   ScienceOn
5 K. Matyjaszewski and J. Xia, 'Atom Transfer Radical Polymerization', Chem. Rev., 101, 2921 (2001)   DOI   ScienceOn
6 C. K. Shin, G. Maier, B. Andreaus, and G. G Scherer, 'Block copolymer ionomers for ion conductive membranes', J. Membr. Sci., 245, 147 (2004)   DOI   ScienceOn
7 M. Zhang and T. P. Russell, 'Graft copolymers from poly(vinylidene fluoride-co-chlorotrifluoroethylene) via atom transfer radical polymerization', Macromolecules, 39, 3531 (2006)   DOI   ScienceOn
8 D. S. Kim, G. P. Robertson, M. D. Guiver, and Y. M. Lee, 'Synthesis of highly fluorinated poly(arylene ether)s copolymers for proton exchange membrane materials', J. Membr. Sci., 281, 111 (2006)   DOI   ScienceOn
9 Y. W. Kim, J. K. Choi, J. T. Park, and J. H. Kim, 'Proton conducting poly(vinylidene fluoride-co-chlorotrifluoroethylene) graft copolymer electrolye membranes', J. Membr. Sci., 313, 315 (2008)   DOI   ScienceOn
10 V. Ramani, H. R. Kunz, and J. M. Fenton, 'Effect of particle size reduction on the conductivity of Nafion${\circledR}$/phosphotungstic acid composite membranes', J. Membr. Sci., 266, 110 (2005)   DOI   ScienceOn
11 H. Pua, S. Ye, and D. Wan, 'Anhydrous proton conductivity of acid doped vinyltriazole-based polymers', Electrochimica Acta., 52, 5879 (2007)   DOI   ScienceOn
12 S. R. Narayanan, S.-P. Yen, L. Liu, and S. G. Greebaum, 'Anhydrous proton-conducting polymericelectrolytes for fuel cells', J. Phys. Chem. B, 110, 3942 (2006)   DOI   ScienceOn
13 B.-J. Chang, D.-J. Kim, J.-H. Kim, S.-B. Lee, and H.-J. Joo, 'Synthesis and Characterization of Polybenzimidazoles Containing Perfluorocyclobutane Groups for High-temperature Fuel Cell Applications', Korean Membr. J., 9, 43 (2007)   과학기술학회마을   ScienceOn
14 J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, 'Membranes from sulfonated block copolymers for use in fuel cells', Sep. Purif. Technol,. 41, 207 (2005)   DOI   ScienceOn
15 M. Yamada and I. Honma, 'Biomembranes for fuel cell electrolytes employing anhydrous proton-conducting uracil composites', Fuel Cells Bulletin, 2006, 11 (2006)
16 D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, 'Preparation and characterization of crosslinked PVA/SiO_2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell ap-plications', J. Membr. Sci., 240, 37 (2004)   DOI   ScienceOn
17 B. J. Liu, G. P. Robertson, M. D. Guiver, Z. Shi, T. Navessin, and S. Holdcroft, 'Fluorinated poly(aryl ether) containing a 4-bromophenyl pendant group and its phosphonated derivative', Macromol. Rapid Commun., 27, 1411 (2006)   DOI   ScienceOn
18 S. Unugur Celik, and A. Bozkurt, 'Preparation and proton conductivity of acid-doped 5-aminotetrazole functional poly(glycidyl methacrylate)', Eur. Polym. J., 44, 213 (2008)   DOI   ScienceOn
19 S. D. Mikhailenko, K. P. Wang, S. Kaliaguine, P. X. Xing, G. P. Robertson, and M. D. Guiver, 'Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK)', J. Membr. Sci., 233, 93 (2004)   DOI   ScienceOn
20 T. Itoh, K. Hirai, M. Tamura, T. Uno, M. Kubo, and Y. Aihara, 'Anhydrous proton-conducting electrolyte membranes based on hyperbranched polymer with phosphonic acid groups for high-temperature fuel cells', J. Power Sources, 178, 627 (2008)   DOI   ScienceOn
21 J. A. Asensio and P. Gomez-Romero, 'Recent developments of proton conducting poly(2,5-benzimidazole) (ABPBI) membranes for high temperature poymer electrolyte membrane fuel cells', Fuel Cells, 5, 336 (2005)   DOI   ScienceOn
22 S. Licoccia and E. Traversa, 'Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids', J. Power Sources, 159, 12 (2006)   DOI   ScienceOn
23 C. H. Park, C. H. Lee, Y. S. Chung, and Y. M. Lee, 'Preparation and Characterization of Crosslinked Block and Random Sulfonated Polyimide Membranes for Fuel Cell', Membrane Journal, 16, 241 (2006)
24 J. H. Koh, J. T. Park, D. K. Roh, J. A. Seo, and J. H. Kim, 'Synthesis of $TiO_2$ nanoparticles using amphiphilic POEM-b-PS-b-POEM triblock copolymer template film', Colloids Suif. A: Physicochem. Eng. Aspects, 329, 51 (2008)   DOI   ScienceOn
25 J. T. Park, K. J. Lee, M. S. Kang, Y. S. Kang, and J. H. Kim, 'Nanocomposite polymer electro-lytes containing silica nanoparticles: comparison between poly( ethylene glycol) and poly( ethylene oxide) dimethyl ether', J. Appl. Polym. Sci., 106, 4083 (2007)   DOI   ScienceOn