• Title/Summary/Keyword: atom transfer radical polymerization

Search Result 72, Processing Time 0.025 seconds

Synthesis of block copolymer of polystyrene and polyethylene glycol methyl ether methacrylate(PEGMA) by ATRP (atom transfer radical polymerization) (ATRP(atom transfer radical polymerization)에 의한 polystyrene과 poly ethylene glycol methyl ether methacrylate(PEGMA)의 블록 공중합체의 합성)

  • Kim, Sang-Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.306-316
    • /
    • 2009
  • In this study, block copolymer of polystyrene and polyethylene glycol methyl ether methacrylate(PEGMA) by ATRP(atom transfer radical polymerization) method was synthesized. 4 arm-molecule which contained halogen atom was synthesized for an initiator. With 4 arm-molecule monodispered polystyrene were synthesized by ATRP method. The molecular change of synthesized monodispersed polystyrene with respect to time was investigated and living polymer characteristic was confirmed. Block copolymer of polystyrene and polyethylene glycol methyl ether methacrylate(PEGMA) was synthesized by ATRP with macroinitiator which was synthesized from the monodispersed polystyrene(Mn=12000). The molecular weight of obtained PS-b-PEGMA was 22,000.

New Tridentate Ligands with Mixed Donor Atoms for Cu-Based Atom Transfer Radical Polymerization

  • Cho, Hong-Youl;Han, Byung-Hui;Kim, Il;Paik, Hyun-Jong
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.539-544
    • /
    • 2006
  • 2-Furancarboxaldehyde-2-pyridinylhydrazone (FPH) and 5-methyl-2-furancarboxaldehyde-2-pyridinylhydrazone (MFPH) were synthesized and used as tridentate ligands of copper (I) bromide for the atom transfer radical polymerization of methyl methacrylate (MMA) and styrene. The polymerization of methyl methacrylate achieved high conversion and yielded polymers with a good control of molecular weight and low polydispersity (PDI=1.33). Higher PDI were observed in the polymerization of styrene. Using 1-phenyl ethylbromide (PEBr) and ethyl 2-bromoisobutyrate (EBiB) as model compounds for the polymeric chain ends, the activation rate constants of the new catalytic systems were measured. These results were correlated with the polymerization results and compared with another catalytic system previously reported.

Iron Catalyzed Atom Transfer Radical Polymerization of Methyl Methacrylate Using Diphenyl-2-pyridylphosphine as a Ligand

  • Xue, Zhigang;Noh, Seok-Kyun;Lyoo, Won-Seok
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.302-307
    • /
    • 2007
  • The living radical polymerization of methyl methacrylate (MMA) by atom transfer radical polymerization, (ATRP) employing a $Fe(II)X_2/diphenyl-2-pyridyl$ phosphine (PyP) catalytic system (X=Cl, Br), was investigated using several initiators and solvents at various temperatures. Most of the polymerizations with the PyP ligand were well controlled, with a linear increase in the number average molecular weights ($M_n$) vs. conversion, with relatively low molecular weight distributions ($M_w/M_n=1.2-1.4$) throughout the reactions. The measured weights matched those of the predicted values. The ethyl-2-bromoisobutyrate (EBriB) initiated ATRP of MMA, with the $Fe(II)X_2/diphenyl-2-pyridyl$ phosphine catalytic system (X=Cl, Br), was better controlled in p-xylene at $80^{\circ}C$ than the other solvents used in this study.

Atom Transfer Radical Polymerization of Hexadecyl Acrylate Using CuSCN as the Catalyst

  • Xu, Wenjian;Zhu, Xiulin;Cheng, Zhenping;Chen, Jianying;Lu, Jianmei
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.32-37
    • /
    • 2004
  • The atom transfer radical polymerization (ATRP) of hexadecyl acrylate (HDA) was carried out in Ν,Ν-dimethylformamide (DMF) in the presence of CuSCN/Ν,Ν,Ν′,Ν"Ν"-pentamethyldiethylenetriamine (PMDETA). The results indicate that the polymerization is well-controlled: a linear increase of molecular weights occurs with respect to conversion and the polydispersities are relatively low. In particular, the use of CuSCN as the catalyst resulted in faster polymerization rates for hexadecyl acrylate than did those using either CuBr or CuCl; the polydis-persity, however, was larger than those obtained in the cases when CuBr and CuCl were used. In addition, we report the thermodynamic data and activation parameters for the solution ATRP of hexadecyl acrylate.

Titanium Complexes: A Possible Catalyst for Controlled Radical Polymerization

  • Kwark, Young-Je;Kim, Jeong-Han;Novak Bruce M.
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2007
  • Pentamethylcyclopentadienyltitanium trichloride, bis(cyclopentadienyl)titanium dichloride ($Cp_2TiCl_2$), and bis(pentamethylcyclopentadienyl)titanium dichloride were used in the polymerization of styrene without the aid of Group I-III cocatalysts. The properties of the resulting polymer indicated that polymerization was more controlled than in thermal polymerization. The kinetic studies indicated that a lower level of termination is present and that the polymer chain can be extended by adding an additional monomer. To elucidate the mechanism of polymerization, a series of experiments was performed. All results supported the involvement of a radical mechanism in the polymerization using $Cp_2TiCl_2$. The possibility of atom transfer radical polymerization (ATRP) mechanism was investigated by isolating the intermediate species. We could confirm the activation step from the reaction of 1-PEC1 with $Cp_2TiCl$ by detecting the coupling product of the generated active radicals. However, the reversible deactivation reaction competes with other side reactions, and it detection was difficult with our model system.

Synthesis and Characterization of MPEG-b-PDPA Amphiphilic Block Copolymer via Atom Transfer Radical Polymerization and Its pH-Dependent Micellar Behavior

  • Dayananda, Kasala;Kim, Min-Sang;Kim, Bong-Sup;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.385-391
    • /
    • 2007
  • Block copolymer micelles are generally formed via the self-assembly of amphiphilic block copolymers in an aqueous medium. The hydrophilic and hydrophobic blocks form shell and core micelles, respectively. The block copolymers of methoxy poly(ethylene glycol) (MPEG)-b-poly(2-diisopropylamino)ethyl methacrylate (PDPA) were synthesized via atom transfer radical polymerization, with the macro initiator synthesized by the coupling of 2-bromoisobutyryl bromide with MPEG in the presence of a triethyl amine base catalyst. The atom transfer radical polymerization of 2-diisopropylamino)ethyl methacrylate was performed in conjunction with an N,N,N',N",N"-pentamethyl-diethylenetriamine/copper bromide catalyst system, in DMF, at $70^{\circ}C$. The pH induced micellization/demicellization was studied using fluorescence, with a pyrene probe. Furthermore, the pH dependent micellization was confirmed using the microviscosity method, with a dipyme fluorescence probe. The pH dependant micelle size distribution was studied using dynamic light scattering. The characterization of the synthesized polymers was established using gel permeation chromatography and from the $^1H-nuclear$ magnetic resonance spectroscopy.

Investigation on Chain Transfer Reaction of Benzene Sulfonyl Chloride in Styrene Radical Polymerization

  • Li, Cuiping;Fu, Zhifeng;Shi, Yan
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.557-562
    • /
    • 2009
  • The free radical polymerization of styrene was initiated with azobis(isobutyronitrile) in the presence of benzene sulfonyl chloride. Analysis of the terminal structures of the obtained polystyrene with $^1H$ NMR spectroscopy revealed the presence of a phenyl sulfonyl group at the ${\alpha}$-end and a chlorine atom at the ${\omega}$-end of each polystyrene chain. The terminal chlorine atom in the polystyrene chains was further confirmed through atom transfer radical polymerization (ATRP) of styrene and methyl acrylate using the obtained polystyrenes as macroinitiators and CuCl/2,2'-bipyridine as the catalyst system. GPC traces of the products obtained in ATRP at different reaction times were clearly shifted to higher molecular weight direction, indicating that nearly all the macroinitiator chains initiated ATRP of the second monomers. In addition, the number-average molecular weights of the polystyrenes increased directly proportional to the monomer conversions, and agreed well with the theoretical ones.

Covalent Functionalization of Carbon Nanotubes using Atom Transfer Radical Polymerization

  • Paik, Hyun-Jong
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.196-197
    • /
    • 2006
  • Among various polymerization methods to graft polymers on the surface of CNTs, Atom Transfer Radical Polymerization (ATRP) has several advantages, such as a wide range of polymerizable monomers and superb control in molecular structure and weights. Several research groups including us have showed that ATRP is an efficient and versatile method to modify the surface of CNTs. Here, two independent approaches for the covalent attachment of polymers based on ATRP graft-from and graft-onto methods will be discussed.

  • PDF

Characterization of Acrylic Polymer-Grafted MWNTs Prepared by Atom Transfer Radical Polymerization (원자이동 라디칼중합 반응에 의하여 제조된 아크릴계 고분자가 그래프트된 MWNT의 특성평가)

  • Joo, Young-Tae;Jung, Kwang-Ho;Kim, Yang-Soo
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.395-401
    • /
    • 2011
  • MWNT/PMMA and MWNT/PDMAEMA nanocomposites were prepared using an atom transfer radical polymerization (ATRP). The FTIR and XRD analysis results showed that the nanocomposites were composed of MWNTs grafted by either PMMA(PMMA-g-MWNTs) or PDMAEMA(PDMAEMA-g-MWNTs). A controlled living radical polymerization of ATRP was characterized by the thermogram analysis for the nanocomposites. The morphologies of prepared nanocomposites were analyzed by transmission electron microscopy. Raman analysis results for the nanocomposites showed that there occurred covalent bonding between acrylic polymers and MWNTs.

Synthesis and Characterization of Poly(vinyl alcohol-b-styrene) via Atom Transfer Radical Polymerization and Saponification

  • Li, Guang-Hua;Cho, Chang-Gi
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.339-344
    • /
    • 2002
  • Poly(vinyl alcohol-b-styrene) (poly(VA-b-St)) diblock copolymer containing high syndiotactic poly (vinyl alcohol) (PVA) was synthesized by the saponification of poly(vinyl pivalate-b-styrene) (poly(VPi-b-St)). For the block copolymer, poly(vinyl pivalate) (PVPi) with trichloromethyl end group was obtained via telomerization of vinyl pivalate with carbon tetrachloride as a telogen and 2,2-azobisisobutyronitrile (AIBN) as an initiator. Then resulting poly(vinyl pivalate) with trichloromethyl end group was used as an effient macroinitiator for the synthesis of poly(VPi-b-St) using atom transfer radical polymerization (ATRP) in the presence of CuCl/2,2'-bipyridine at 130 $^{\circ}C$. The poly(vinyl pivalate) macroinitiator, poly(VPi-b-St), poly(VA-b-St) were characterized by GPC, FT-IR and $^1$H-NMR. And the analysis showed that integrity of the block copolymer was maintained during saponification reaction.