New Tridentate Ligands with Mixed Donor Atoms for Cu-Based Atom Transfer Radical Polymerization

  • Cho, Hong-Youl (Department of Polymer Science and Engineering, Pusan National University) ;
  • Han, Byung-Hui (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim, Il (Department of Polymer Science and Engineering, Pusan National University) ;
  • Paik, Hyun-Jong (Department of Polymer Science and Engineering, Pusan National University)
  • Published : 2006.10.31

Abstract

2-Furancarboxaldehyde-2-pyridinylhydrazone (FPH) and 5-methyl-2-furancarboxaldehyde-2-pyridinylhydrazone (MFPH) were synthesized and used as tridentate ligands of copper (I) bromide for the atom transfer radical polymerization of methyl methacrylate (MMA) and styrene. The polymerization of methyl methacrylate achieved high conversion and yielded polymers with a good control of molecular weight and low polydispersity (PDI=1.33). Higher PDI were observed in the polymerization of styrene. Using 1-phenyl ethylbromide (PEBr) and ethyl 2-bromoisobutyrate (EBiB) as model compounds for the polymeric chain ends, the activation rate constants of the new catalytic systems were measured. These results were correlated with the polymerization results and compared with another catalytic system previously reported.

Keywords

References

  1. K. Matyjaszewski and J. Xia, Chem. Rev., 101, 2921 (2001) https://doi.org/10.1021/cr940534g
  2. M. Kamigaito, T. Ando, and M. Sawamoto, Chem. Rev., 101, 3689 (2001) https://doi.org/10.1021/cr9901182
  3. H. Fischer, Chem. Rev., 101, 3581 (2001) https://doi.org/10.1021/cr990124y
  4. Y. A. Kabachii, S. Y. Kochev, L. M. Bronstein, I. B. Blagodatskikh, and P. M. Valetsky, Polym. Bull., 50, 271 (2003)
  5. J. A. M. Brandts, P. van de Geijn, E. E. van Faassen, J. Boersma, and G. Van Koten, J. Organomet. Chem., 584, 246 (1999) https://doi.org/10.1016/S0022-328X(99)00149-7
  6. E. Le Grognec, J. Claverie, and R. Poli, J. Am. Chem. Soc., 123, 9513 (2001) https://doi.org/10.1021/ja010998d
  7. M. Kato, M. Kamigaito, M. Sawamoto, and T. Higashimura, Macromolecules, 28, 1721 (1995) https://doi.org/10.1021/ma00109a056
  8. C. Granel, P. Dubois, R. Jerome, and P. Teyssie, Macromolecules, 29, 8576 (1996) https://doi.org/10.1021/ma9608380
  9. J. Xia and K. Matyjaszewski, Macromolecules, 30, 7697 (1997) https://doi.org/10.1021/ma971009x
  10. M. Teodorescu, S. G. Gaynor, and K. Matyjaszewski, Macromolecules, 33, 2335 (2000) https://doi.org/10.1021/ma991652e
  11. V. C. Gibson, R. K. O'Reilly, W. Reed, D. F. Wass, A. J. P. White, and D. J. Williams, Chem. Comm., 1850 (2002)
  12. V. C. Gibson, R. K. O'Reilly, D. F. Wass, A. J. P. White, and D. J. Williams, Macromolecules, 36, 2591 (2003) https://doi.org/10.1021/ma034046z
  13. K. Matyjaszewski, T. E. Patten, and J. Xia, J. Am. Chem. Soc., 119, 674 (1997) https://doi.org/10.1021/ja963361g
  14. D. M. Haddleton, C. B. Jasieczek, M. J. Hannon, and A. J. Shooter, Macromolecules, 30, 2190 (1997) https://doi.org/10.1021/ma961074r
  15. B. Gobelt and K. Matyjaszewski, Macromol. Chem. Phys., 201, 1619 (2000) https://doi.org/10.1002/1521-3935(20000901)201:14<1619::AID-MACP1619>3.0.CO;2-O
  16. S. C. Hong and K. Matyjaszewski, Macromolecules, 35, 7592 (2002) https://doi.org/10.1021/ma020054o
  17. P. Kubisa, Prog. Polym. Sci., 29, 3 (2004) https://doi.org/10.1016/j.progpolymsci.2003.10.002
  18. T. Sarbu and K. Matyjaszewski, Macromol. Chem. Phys., 202, 3379 (2001) https://doi.org/10.1002/1521-3935(20011101)202:17<3379::AID-MACP3379>3.0.CO;2-3
  19. J. Xia, T. Johnson, S. G. Gaynor, K. Matyjaszewski, and J. DeSimone, Macromolecules, 32, 4802 (1999) https://doi.org/10.1021/ma9900380
  20. J. Xia and K. Matyjaszewski, Macromolecules, 32, 2434 (1999) https://doi.org/10.1021/ma981694n
  21. J. Xia, X. Zhang, and K. Matyjaszewski, Macromolecules, 32, 3531 (1999) https://doi.org/10.1021/ma9816968
  22. K. Matyjaszewski, B. Gobelt, H.-j. Paik, and C. P. Horwitz, Macromolecules, 34, 430 (2001) https://doi.org/10.1021/ma001181s
  23. G. H. Li and C. G. Cho, Macromol. Res., 10, 339 (2002) https://doi.org/10.1007/BF03218328
  24. W. Xu, X. Zhu, Z. Cheng, J. Chen, and J. Lu, Macromol. Res., 12, 32 (2004) https://doi.org/10.1007/BF03218992
  25. Y.-W. Lee, S. M. Kang, K. R. Yoon, Y. S. Chi, I. S. Choi, S.-P. Hong, B.-C. Yu, H.-j. Paik, and W. S. Yun, Macromol. Res., 13, 356 (2005) https://doi.org/10.1007/BF03218466
  26. T. Pintauer and K. Matyjaszewski, Coord. Chem. Rev., 249, 1155 (2005) https://doi.org/10.1016/j.ccr.2004.11.010
  27. S. Perrier, S. P. Armes, X. S. Wang, F. Malet, and D. M. Haddleton, J. Polym. Sci. Polym. Chem., 39, 1696 (2001) https://doi.org/10.1002/pola.1147
  28. T. E. Patten, J. Xia, T. Abernathy, and K. Matyjaszewski, Science, 272, 866 (1996) https://doi.org/10.1126/science.272.5263.866
  29. G. Kickelbick and K. Matyjaszewski, Macromol. Rapid Comm., 20, 341 (1999) https://doi.org/10.1002/(SICI)1521-3927(19990601)20:6<341::AID-MARC341>3.0.CO;2-Z
  30. J. M. Goodwin, M. M. Olmstead, and T. E. Patten, J. Am. Chem. Soc., 126, 14352 (2004) https://doi.org/10.1021/ja045003g
  31. J. Xia, S. G. Gaynor, and K. Matyjaszewski, Macromolecules, 31, 5958 (1998) https://doi.org/10.1021/ma980725b
  32. K. Matyjaszewski, H.-j. Paik, P. Zhou, and S. J. Diamanti, Macromolecules, 34, 5125 (2001) https://doi.org/10.1021/ma010185+