• Title/Summary/Keyword: asymptotically nonexpansive in the intermediate sense mappings

Search Result 9, Processing Time 0.027 seconds

CONVERGENCE THEOREMS OF MIXED TYPE IMPLICIT ITERATION FOR NONLINEAR MAPPINGS IN CONVEX METRIC SPACES

  • Kyung Soo, Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.903-920
    • /
    • 2022
  • In this paper, we propose and study an implicit iteration process for a finite family of total asymptotically quasi-nonexpansive mappings and a finite family of asymptotically quasi-nonexpansive mappings in the intermediate sense in convex metric spaces and establish some strong convergence results. Also, we give some applications of our result in the setting of convex metric spaces. The results of this paper are generalizations, extensions and improvements of several corresponding results.

WEAK AND STRONG CONVERGENCE CRITERIA OF MODIFIED NOOR ITERATIONS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE

  • Banerjee, Shrabani;Choudhury, Binayak Samadder
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.493-506
    • /
    • 2007
  • In this paper weak and strong convergence theorems of modified Noor iterations to fixed points for asymptotically nonexpansive mappings in the intermediate sense in Banach spaces are established. In one theorem where we establish strong convergence we assume an additional property of the operator whereas in another theorem where we establish weak convergence assume an additional property of the space.

STRONG CONVERGENCE THEOREMS FOR FIXED POINT PROBLEMS OF ASYMPTOTICALLY QUASI-𝜙-NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE

  • Jeong, Jae Ug
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.621-633
    • /
    • 2014
  • In this paper, we introduce a general iterative algorithm for asymptotically quasi-${\phi}$-nonexpansive mappings in the intermediate sense to have the strong convergence in the framework of Banach spaces. The results presented in the paper improve and extend the corresponding results announced by many authors.

CONVERGENCE THEOREMS OF IMPLICIT ITERATION PROCESS WITH ERRORS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE IN BANACH SPACES

  • Saluja, G.S.
    • East Asian mathematical journal
    • /
    • v.28 no.1
    • /
    • pp.63-71
    • /
    • 2012
  • The aim of this article is to study an implicit iteration process with errors for a finite family of non-Lipschitzian asymptotically non expansive mappings in the intermediate sense in Banach spaces. Also we establish some strong convergence theorems and a weak convergence theorem for said scheme to converge to a common fixed point for non Lipschitzian asymptotically nonexpansive mappings in the intermediate sense. The results presented in this paper extend and improve the corresponding results of [1], [3]-[8], [10]-[11], [13]-[14], [16] and many others.

ON THE CONVERGENCE OF HYBRID PROJECTION METHODS FOR ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN THE INTERMEDIATE SENSE

  • Cho, Sun-Young;Kang, Shin-Min;Qin, Xiaolong
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.473-482
    • /
    • 2011
  • In this paper, mappings which are asymptotically pseudo-contractive in the intermediate sense are considered based on a hybrid projection method. Strong convergence theorems of fixed points are established in the framework of Hilbert spaces.

FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE IN CAT(0) SPACES

  • Abbas, Mujahid;Thakur, Balwant Singh;Thakur, Dipti
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.107-121
    • /
    • 2013
  • The purpose of this paper is to investigate the demiclosed principle, the existence theorems and convergence theorems in CAT(0) spaces for a class of mappings which is essentially wider than that of asymptotically nonexpansive mappings. The structure of fixed point set of such mappings is also studied. Our results generalize, unify and extend several comparable results in the existing literature.

APPROXIMATING COMMON FIXED POINTS OF ONE-STEP ITERATIVE SCHEME WITH ERROR FOR NON-SELF ASYMPTOTICALLY NONEXPANSIVE IN THE INTERMEDIATE SENSE MAPPINGS

  • Saluja, Gurucharan Singh;Nashine, Hemant Kumar
    • East Asian mathematical journal
    • /
    • v.26 no.3
    • /
    • pp.429-440
    • /
    • 2010
  • In this paper, we study a new one-step iterative scheme with error for approximating common fixed points of non-self asymptotically nonexpansive in the intermediate sense mappings in uniformly convex Banach spaces. Also we have proved weak and strong convergence theorems for above said scheme. The results obtained in this paper extend and improve the recent ones, announced by Zhou et al. [27] and many others.

Noor Iterations with Error for Non-Lipschitzian Mappings in Banach Spaces

  • Plubtieng, Somyot;Wangkeeree, Rabian
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.201-209
    • /
    • 2006
  • Suppose C is a nonempty closed convex subset of a real uniformly convex Banach space X. Let T : $C{\rightarrow}C$ be an asymptotically nonexpansive in the intermediate sense mapping. In this paper we introduced the three-step iterative sequence for such map with error members. Moreover, we prove that, if T is completely continuous then the our iterative sequence converges strongly to a fixed point of T.

  • PDF

REMARKS ON APPROXIMATION OF FIXED POINTS OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS

  • Kim, Tae-Hwa;Kim, Eun-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.461-475
    • /
    • 2000
  • In the present paper, we first give some examples of self-mappings which are asymptoticaly nonexpansive in the intermediate, not strictly hemicontractive, but satisfy the property (H). It is then shown that the modified Mann and Ishikawa iteration processes defined by $x_{n+1}=(1-\alpha_n)x_n+\alpha_nT^nx_n\ and\ x_{n+1}=(1-\alpha_n)x_n+\alpha_nT^n[(1-\beta_n)x_n+\beta_nT^nx_n]$,respectively, converges strongly to the unique fixed point of such a self-mapping in general Banach spaces.

  • PDF