REMARKS ON APPROXIMATION OF FIXED POINTS OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS

  • Kim, Tae-Hwa (Department of Applied Mathematics, Pukyong National University) ;
  • Kim, Eun-Suk (Department of Applied Mathematics, Pukyong National University)
  • Published : 2000.08.01

Abstract

In the present paper, we first give some examples of self-mappings which are asymptoticaly nonexpansive in the intermediate, not strictly hemicontractive, but satisfy the property (H). It is then shown that the modified Mann and Ishikawa iteration processes defined by $x_{n+1}=(1-\alpha_n)x_n+\alpha_nT^nx_n\ and\ x_{n+1}=(1-\alpha_n)x_n+\alpha_nT^n[(1-\beta_n)x_n+\beta_nT^nx_n]$,respectively, converges strongly to the unique fixed point of such a self-mapping in general Banach spaces.

Keywords

References

  1. Technion preprint series no.MT-319 On strict pseudo-contractions and a fixed point theorem J.Bogin
  2. Bull.Amer.Math.Soc. v.73 Nonlinear mappings of nonexpansive and accretive type in Banach F.E.Browder
  3. Colloq.Math. v.65 no.2 Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property R.E.Bruck;T.Kuczumow;S.Reich
  4. Proc.Amer.Math.Soc. v.99 no.2 Iterative approximation of fixed points of Lipschitz strictly pseudo-contractive mappings C.E.Chidume
  5. J.Math.Anal.Appl. v.151 An iterative process for nonlinear Lipschitzian strongly accretive mappings in Lp spaces
  6. Proc.Amer.Math.Soc. v.120 Approximation of fixed points of strongly pseudo-contractive mappings
  7. Numer.Funct.Anal. & Optimiz. v.15 Fixed point iterations for strictly hemi-contractive maps in uniformly smooth Banach spaces
  8. Acta Appl.Math. v.32 An iterative process for nonlinear lipschitzian and strongly accretive mappings in uniformly convex and uniformaly smooth Banach spaces L.Deng
  9. Nonlinear Anal.TMA v.24 Iterative approximation of Lipschitz strictly pseudo-contractive mappings in uniformly smooth Banach spaces L.Deng;X.P.Ding
  10. Proc.Amer.Math.Soc. v.35 A fixed point theorem for asymptotically nonexpansive mappings K.Goebel;W.A.Kirk
  11. Proc.Amer.Math.Soc. v.125 Approximation of fixed points of strictly pseudo-contractive maps without Lipschitz assumption Z.Haiyun;J.Yuting
  12. Proc.Amer.Math.Soc. v.44 no.1 Fixed point by a new iteration method S.Ishikawa
  13. J.Math.Soc.Japan v.19 Nonlinear semigroups and evolution equations T.Kato
  14. Israel J.Math. v.17 Fixed point theorems for non-lipschitzian mappings of asymptotically nonexpansive type W.A.Kirk
  15. Proc.Amer.Math.Soc. v.125 Approximation of fixed points of strictly pseudocontractive mapping L.Liu
  16. Jour.Math.Anal.Appl. v.194 Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces L.S.Liu
  17. Proc.Amer.Math.Soc. v.4 Mean value methods in iteration W.R.Mann
  18. Nonlinear Anal.TMA v.2 an iterative procedure for constructing zeros of accretive sets in Banach spaces S.Reich
  19. J.Math.Anal.Appl. v.158 Iterative contraction of fixed points of asymptotically nonexpansive mappings J.Schu
  20. Houston J.Math. v.19 Approximating fixed points of Lipschitzian pseudocontractive mappings
  21. Proc.Amer.Math.Soc. v.122 Fixed point iteration processes for asymptotically nonexpansive mappings K.K.Tan;H.K.Xu
  22. J.Math.Anal.Appl. v.178 Iterative solution to nonlinear equations and strongly accretive operators in Banach spaces
  23. Proc.Amer.Math.Soc. v.113 no.3 Fixed point iteration for local strictly pseudo-contractive mapping X.Weng