DOI QR코드

DOI QR Code

FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE IN CAT(0) SPACES

  • Abbas, Mujahid (Department of Mathematics Lahore University of Management Sciences) ;
  • Thakur, Balwant Singh (School of Studies in Mathematics Pt.Ravishankar Shukla University) ;
  • Thakur, Dipti (School of Studies in Mathematics Pt.Ravishankar Shukla University)
  • Received : 2012.02.03
  • Published : 2013.01.31

Abstract

The purpose of this paper is to investigate the demiclosed principle, the existence theorems and convergence theorems in CAT(0) spaces for a class of mappings which is essentially wider than that of asymptotically nonexpansive mappings. The structure of fixed point set of such mappings is also studied. Our results generalize, unify and extend several comparable results in the existing literature.

Keywords

References

  1. R. P. Agarwal, D. O'Regan, and D. R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications, Topological Fixed Point Theory and Its Applications 6, Springer, New York, 2009.
  2. M. Bridson and A. Haeflinger, Metric Spaces of Non-positive Curvature, Springer-Verlag, Berlin, 1999.
  3. F. E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660-665. https://doi.org/10.1090/S0002-9904-1968-11983-4
  4. R. E. Bruck, Y. Kuczumow, and S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math. 65 (1993), no. 2, 169-179.
  5. F. Bruhat and J. Tits, Groupes reductifs sur un corps local, Inst. Hautes etudes Sci. Publ. Math. 41 (1972), 5-251. https://doi.org/10.1007/BF02715544
  6. D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry, in: Graduate Studies in Mathematics, Vol. 33, Americal Mathematical Society, Providence, RI, 2001.
  7. S. S. Chang, K. K. Tan, H. W. J. Lee, and C. K. Chan, On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 313 (2006), no. 1, 273-283. https://doi.org/10.1016/j.jmaa.2005.05.075
  8. C. E. Chidume and N. Shahzad, Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings, Nonlinear Anal. 62 (2005), no. 6, 1149-1156. https://doi.org/10.1016/j.na.2005.05.002
  9. S. Dhompongsa, W. A. Kirk, and B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal. 8 (2007), no. 1, 35-45.
  10. S. Dhompongsa, W. A. Kirk, and B. Sims, Fixed points of uniformly lipschitzian mappings, Nonlinear Anal. 65 (2006), no. 4, 762-772. https://doi.org/10.1016/j.na.2005.09.044
  11. S. Dhompongsa and B. Panyanak, On ${\Delta}$-convergence theorem in CAT(0) spaces, Comput. Math. Appl. 56 (2008), no. 10, 2572-2579. https://doi.org/10.1016/j.camwa.2008.05.036
  12. R. Espinola and A. Nicolae, Geodesic Ptolemy spaces and fixed points, Nonlinear Anal. 74 (2011), no. 1, 27-34. https://doi.org/10.1016/j.na.2010.08.009
  13. H. Fukhar-ud-din and S. H. Khan, Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications, J. Math. Anal. Appl. 328 (2007), no. 2, 821-829. https://doi.org/10.1016/j.jmaa.2006.05.068
  14. K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174. https://doi.org/10.1090/S0002-9939-1972-0298500-3
  15. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
  16. K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Marcel Dekker, Inc., New York, 1984.
  17. N. Hussain and M. A. Khamsi, On asymptotic pointwise contractions in metric spaces, Nonlinear Anal. 71 (2009), no. 10, 4423-4429. https://doi.org/10.1016/j.na.2009.02.126
  18. W. A. Kirk, Geodesic geometry and fixed point theory, in Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), Vol.64, Coleccion Abierta, pp.195-225, University de Sevilla, Secretariado de Publicaciones, Sevilla, Spain, 2003.
  19. W. A. Kirk, Geodesic geometry and fixed point theory II, in International Conference on Fixed Point Theory and Applications, pp. 113-142, Yokohama Publishers, Yokohama, Japan, 2004.
  20. W. A. Kirk, Fixed point theorems in CAT(0) spaces and ${\mathbb{Z}}$-trees, Fixed Point Theory Appl. 2004 (2004), no. 4, 309-316.
  21. W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), no. 12, 3689-3696. https://doi.org/10.1016/j.na.2007.04.011
  22. T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179-182. https://doi.org/10.1090/S0002-9939-1976-0423139-X
  23. B. Nanjaras and B. Panyanak, Demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl. 2010 (2010), Art. ID 268780, 14 pp.
  24. D. R. Sahu and I. Beg, Weak and strong convergence for fixed points of nearly asymptotically non-expansive mappings, Int. J. Mod. Math. 3 (2008), no. 2, 135-151.
  25. H. F. Senter and W. G. Dotson, Jr., Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380. https://doi.org/10.1090/S0002-9939-1974-0346608-8
  26. N. Shahzad and H. Zegeye, Strong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive maps, Appl. Math. Comput. 189 (2007), no. 2, 1058-1065. https://doi.org/10.1016/j.amc.2006.11.152
  27. Z. H. Sun, Strong Convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 286 (2003), no. 1, 351-358. https://doi.org/10.1016/S0022-247X(03)00537-7
  28. K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), no. 2, 301-308. https://doi.org/10.1006/jmaa.1993.1309
  29. H. K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Anal. 16 (1991), no. 12, 1139-1146. https://doi.org/10.1016/0362-546X(91)90201-B
  30. H. K. Xu and R. G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22 (2001), no. 5-6, 767-773. https://doi.org/10.1081/NFA-100105317

Cited by

  1. On the convergence of fixed points for Lipschitz type mappings in hyperbolic spaces vol.2014, pp.1, 2014, https://doi.org/10.1186/1687-1812-2014-229
  2. Modified Picard-Mann hybrid iteration process for total asymptotically nonexpansive mappings vol.2015, pp.1, 2015, https://doi.org/10.1186/s13663-015-0391-5
  3. Strong and △-convergence theorems for total asymptotically nonexpansive nonself mappings in CAT(0) spaces vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-557
  4. Fixed Point Approximation for Asymptotically Nonexpansive Type Mappings in Uniformly Convex Hyperbolic Spaces vol.2015, 2015, https://doi.org/10.1155/2015/510798
  5. △-Convergence analysis of improved Kuhfittig iterative for asymptotically nonexpansive nonself-mappings in W-hyperbolic spaces vol.2014, pp.1, 2014, https://doi.org/10.1186/1029-242X-2014-303
  6. One-Step Iteration Scheme for Multivalued Nonexpansive Mappings in CAT(0) Spaces vol.13, pp.3, 2016, https://doi.org/10.1007/s00009-015-0531-5
  7. Strong and △-convergence theorems for two asymptotically nonexpansive mappings in the intermediate sense in CAT ( 0 ) spaces vol.2015, pp.1, 2015, https://doi.org/10.1186/s13663-015-0259-8
  8. Convergence of modified S-iteration process for two asymptotically nonexpansive mappings in the intermediate sense in CAT ( 0 ) spaces vol.2014, pp.1, 2014, https://doi.org/10.1186/1029-242X-2014-368