• Title/Summary/Keyword: asymptotically

Search Result 648, Processing Time 0.022 seconds

CONVERGENCE TO COMMON FIXED POINTS FOR A FINITE FAMILY OF GENERALIZED ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Saluja, G.S.
    • East Asian mathematical journal
    • /
    • v.29 no.1
    • /
    • pp.23-37
    • /
    • 2013
  • The purpose of this paper is to study an implicit iteration process with errors and establish weak and strong convergence theorems to converge to common fixed points for a finite family of generalized asymptotically quasi-nonexpansive mappings in the framework of uniformly convex Banach spaces. Our results extend, improve and generalize some known results from the existing literature.

ITERATIVE APPROXIMATIONS OF FIXED POINTS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Chang, S.S;Park, J.Y;Cho, Y.J
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.109-119
    • /
    • 2000
  • The purpose of this paper is to study the iterative approximations of fixed points for asymptotically pseudo-contractive mappings and asymptotically nonexpansive mappings in Banach spaces. The results presented in this paper extend and improve the main results in Geobel-Kirk [4], Liu [5] and Schu [7].

  • PDF

STRONG CONVERGENCE OF MODIFIED HYBRID ALGORITHM FOR QUASI-φ-ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Zhang, Huancheng;Su, Yongfu
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.539-551
    • /
    • 2009
  • In this paper, we propose a modified hybrid algorithm and prove strong convergence theorems for a family of quasi-$\phi$-asymptotically nonexpansive mappings. Our results extend and improve the results by Nakajo, Takahashi, Kim, Xu, Su and some others.

ON ASYMPTOTICALLY f-ROUGH STATISTICAL EQUIVALENT OF TRIPLE SEQUENCES

  • SUBRAMANIAN, N.;ESI, A.
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.5_6
    • /
    • pp.459-467
    • /
    • 2019
  • In this work, via Orlicz functions, we have obtained a generalization of rough statistical convergence of asymptotically equivalent triple sequences a new non-matrix convergence method, which is intermediate between the ordinary convergence and the rough statistical convergence. We also have examined some inclusion relations related to this concept. We obtain the results are non negative real numbers with respect to the partial order on the set of real numbers.

Asymptotically Stable Adaptive Load Torque Observer for Precision Position Control of BLDC Motor

  • 고종선
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.97-100
    • /
    • 1997
  • A new control method for the robust position control of a brushless DC(BLDC) motor using the asymptotically stable adaptive load torque observer is presented. A precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method. And the application of the load torque observer is published in [1] using fixed gain. However, the flux linkage is not exactly known for a load torque observer. Therefore, a model reference adaptive observer is considered to overcome the problem of the unknown parameter in this paper. And stability analysis is carried out using Liapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current having the fast response.

  • PDF

ON THE STRONG CONVERGENCE THEOREMS FOR ASYMPTOTICALLY NONEXPANSIVE SEMIGROUPS IN BANACH SPACES

  • Chang, Shih-Sen;Zhao, Liang Cai;Wu, Ding Ping
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.13-23
    • /
    • 2009
  • Some strong convergence theorems of explicit iteration scheme for asymptotically nonexpansive semi-groups in Banach spaces are established. The results presented in this paper extend and improve some recent results in [T. Suzuki. On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces, Proc. Amer. Math. Soc. 131(2002)2133-2136; H. K. Xu. A strong convergence theorem for contraction semigroups in Banach spaces, Bull. Aust. Math. Soc. 72(2005)371-379; N. Shioji and W. Takahashi. Strong convergence theorems for continuous semigroups in Banach spaces, Math. Japonica. 1(1999)57-66; T. Shimizu and W. Takahashi. Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211(1997)71-83; N. Shioji and W. Takahashi. Strong convergence theorems for asymptotically nonexpansive mappings in Hilbert spaces, Nonlinear Anal. TMA, 34(1998)87-99; H. K. Xu. Approximations to fixed points of contraction semigroups in Hilbert space, Numer. Funct. Anal. Optim. 19(1998), 157-163.]

  • PDF

COMPOSITE IMPLICIT RANDOM ITERATIONS FOR APPROXIMATING COMMON RANDOM FIXED POINT FOR A FINITE FAMILY OF ASYMPTOTICALLY NONEXPANSIVE RANDOM OPERATORS

  • Banerjee, Shrabani;Choudhury, Binayak S.
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.23-35
    • /
    • 2011
  • In the present work we construct a composite implicit random iterative process with errors for a finite family of asymptotically nonexpansive random operators and discuss a necessary and sufficient condition for the convergence of this process in an arbitrary real Banach space. It is also proved that this process converges to the common random fixed point of the finite family of asymptotically nonexpansive random operators in the setting of uniformly convex Banach spaces. The present work also generalizes a recently established result in Banach spaces.

MAXIMAL INEQUALITIES AND STRONG LAW OF LARGE NUMBERS FOR AANA SEQUENCES

  • Xuejun, Wang;Shuhe, Hu;Xiaoqin, Li;Wenzhi, Yang
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.151-161
    • /
    • 2011
  • Let {$X_n$, $n{\geq}1$} be a sequence of asymptotically almost negatively associated random variables and $S_n=\sum^n_{i=1}X_i$. In the paper, we get the precise results of H$\acute{a}$jek-R$\acute{e}$nyi type inequalities for the partial sums of asymptotically almost negatively associated sequence, which generalize and improve the results of Theorem 2.4-Theorem 2.6 in Ko et al. ([4]). In addition, the large deviation of $S_n$ for sequence of asymptotically almost negatively associated random variables is studied. At last, the Marcinkiewicz type strong law of large numbers is given.