• Title/Summary/Keyword: asymptotic value

Search Result 204, Processing Time 0.023 seconds

ON ASYMPTOTIC OF EXTREMES FROM GENERALIZED MAXWELL DISTRIBUTION

  • Huang, Jianwen;Wang, Jianjun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.679-698
    • /
    • 2018
  • In this paper, with optimal normalized constants, the asymptotic expansions of the distribution and density of the normalized maxima from generalized Maxwell distribution are derived. For the distributional expansion, it shows that the convergence rate of the normalized maxima to the Gumbel extreme value distribution is proportional to 1/ log n. For the density expansion, on the one hand, the main result is applied to establish the convergence rate of the density of extreme to its limit. On the other hand, the main result is applied to obtain the asymptotic expansion of the moment of maximum.

Model Reference Adaptive Control of a Flexible Structure

  • Yang, Kyung-Jinn;Hong, Keum-Shik;Rhee, Eun-Jun;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1356-1368
    • /
    • 2001
  • In this paper, the model reference adaptive control (MRAC) of a flexible structure is investigated. Any mechanically flexible structure is inherently distributed parameter in nature, so that its dynamics are described by a partial, rather than ordinary, differential equation. The MRAC problem is formulated as an initial value problem of coupled partial and ordinary differential equations in weak form. The well-posedness of the initial value problem is proved. The control law is derived by using the Lyapunov redesign method on an infinite dimensional filbert space. Uniform asymptotic stability of the closed loop system is established, and asymptotic tracking, i. e., convergence of the state-error to zero, is obtained. With an additional persistence of excitation condition for the reference model, parameter-error convergence to zero is also shown. Numerical simulations are provided.

  • PDF

A Study on Kernel Type Discontinuity Point Estimations

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.929-937
    • /
    • 2003
  • Kernel type estimations of discontinuity point at an unknown location in regression function or its derivatives have been developed. It is known that the discontinuity point estimator based on $Gasser-M\ddot{u}ller$ regression estimator with a one-sided kernel function which has a zero value at the point 0 makes a poor asymptotic behavior. Further, the asymptotic variance of $Gasser-M\ddot{u}ller$ regression estimator in the random design case is 1.5 times larger that the one in the corresponding fixed design case, while those two are identical for the local polynomial regression estimator. Although $Gasser-M\ddot{u}ller$ regression estimator with a one-sided kernel function which has a non-zero value at the point 0 for the modification is used, computer simulation show that this phenomenon is also appeared in the discontinuity point estimation.

  • PDF

AN ASYMPTOTIC FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION-DIFFUSION TYPE WITH DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1057-1069
    • /
    • 2008
  • We consider singularly perturbed Boundary Value Problems (BVPs) for third and fourth order Ordinary Differential Equations(ODEs) of convection-diffusion type with discontinuous source term and a small positive parameter multiplying the highest derivative. Because of the type of Boundary Conditions(BCs) imposed on these equations these problems can be transformed into weakly coupled systems. In this system, the first equation does not have the small parameter but the second contains it. In this paper a computational method named as 'An asymptotic finite element method' for solving these systems is presented. In this method we first find an zero order asymptotic approximation to the solution and then the system is decoupled by replacing the first component of the solution by this approximation in the second equation. Then the second equation is independently solved by a fitted mesh Finite Element Method (FEM). Numerical experiments support our theoritical results.

  • PDF

NUMERICAL METHOD FOR SINGULARLY PERTURBED THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS OF REACTION-DIFFUSION TYPE

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.277-302
    • /
    • 2017
  • In this paper, we have proposed a numerical method for Singularly Perturbed Boundary Value Problems (SPBVPs) of reaction-diffusion type of third order Ordinary Differential Equations (ODEs). The SPBVP is reduced into a weakly coupled system of one first order and one second order ODEs, one without the parameter and the other with the parameter ${\varepsilon}$ multiplying the highest derivative subject to suitable initial and boundary conditions, respectively. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference scheme. The weakly coupled system is decoupled by replacing one of the unknowns by its zero-order asymptotic expansion. Finally the present numerical method is applied to the decoupled system. In order to get a numerical solution for the derivative of the solution, the domain is divided into three regions namely two inner regions and one outer region. The Shooting method is applied to two inner regions whereas for the outer region, standard finite difference (FD) scheme is applied. Necessary error estimates are derived for the method. Computational efficiency and accuracy are verified through numerical examples. The method is easy to implement and suitable for parallel computing. The main advantage of this method is that due to decoupling the system, the computation time is very much reduced.

A NEW MEAN VALUE RELATED TO D. H. LEHMER'S PROBLEM AND KLOOSTERMAN SUMS

  • Han, Di;Zhang, Wenpeng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • Let q > 1 be an odd integer and c be a fixed integer with (c, q) = 1. For each integer a with $1{\leq}a{\leq}q-1$, it is clear that the exists one and only one b with $0{\leq}b{\leq}q-1$ such that $ab{\equiv}c$ (mod q). Let N(c, q) denote the number of all solutions of the congruence equation $ab{\equiv}c$ (mod q) for $1{\leq}a$, $b{\leq}q-1$ in which a and $\bar{b}$ are of opposite parity, where $\bar{b}$ is defined by the congruence equation $b\bar{b}{\equiv}1$ (modq). The main purpose of this paper is using the mean value theorem of Dirichlet L-functions to study the mean value properties of a summation involving $(N(c,q)-\frac{1}{2}{\phi}(q))$ and Kloosterman sums, and give a sharper asymptotic formula for it.

Test for Discontinuities in Nonparametric Regression

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.709-717
    • /
    • 2008
  • The difference of two one-sided kernel estimators is usually used to detect the location of the discontinuity points of regression function. The large absolute value of the statistic imply discontinuity of regression function, so we may use the difference of two one-sided kernel estimators as the test statistic for testing null hypothesis of a smooth regression function. The problem is, however, we only know the asymptotic distribution of the test statistic under $H_0$ and we hardly expect the good performance of test if we rely solely on the asymptotic distribution for determining the critical points. In this paper, we show that if we adjust the bias of test statistic properly, the asymptotic rules hold for even small sample size situation.

THE METHOD OF ASYMPTOTIC INNER BOUNDARY CONDITION FOR SINGULAR PERTURBATION PROBLEMS

  • Andargie, Awoke;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.937-948
    • /
    • 2011
  • The method of Asymptotic Inner Boundary Condition for Singularly Perturbed Two-Point Boundary value Problems is presented. By using a terminal point, the original second order problem is divided in to two problems namely inner region and outer region problems. The original problem is replaced by an asymptotically equivalent first order problem and using the stretching transformation, the asymptotic inner condition in implicit form at the terminal point is determined from the reduced equation of the original second order problem. The modified inner region problem, using the transformation with implicit boundary conditions is solved and produces a condition for the outer region problem. We used Chawla's fourth order method to solve both the inner and outer region problems. The proposed method is iterative on the terminal point. Some numerical examples are solved to demonstrate the applicability of the method.

An alternative approach to extreme value analysis for design purposes

  • Bardsley, Earl
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.201-201
    • /
    • 2016
  • The asymptotic extreme value distributions of maxima are a natural choice when designing against future extreme events like flood peaks or wave heights, given a stationary time series. The generalized extreme value distribution (GEV) is often utilised in this context because it is seen as a convenient single expression for extreme event analysis. However, the GEV has a drawback because the location of the distribution bound relative to the data is a discontinuous function of the GEV shape parameter. That is, for annual maxima approximated by the Gumbel distribution, the data is also consistent with a GEV distribution with an upper bound (no lower bound) or a GEV distribution with a lower bound (no upper bound). A more consistent single extreme value expression for design purposes is proposed as the Weibull distribution of smallest extremes, as applied to transformed annual maxima. The Weibull distribution limit holds here for sufficiently large sample sizes, irrespective of the extreme value domain of attraction applicable to the untransformed maxima. The Gumbel, Type 2, and Type 3 extreme value distributions thus become redundant, together with the GEV, because in reality there is only a single asymptotic extreme value distribution required for design purposes - the Weibull distribution of minima as applied to transformed maxima. An illustrative synthetic example is given showing transformed maxima from the normal distribution approaching the Weibull limit much faster than the untransformed sample maxima approach the normal distribution Gumbel limit. Some New Zealand examples are given with the Weibull distribution being applied to reciprocal transformations of annual flood maxima, where the untransformed maxima follow apparently different extreme value distributions.

  • PDF

The Asymptotic Worst-Case Ratio of the Bin Packing Problem by Maximum Occupied Space Technique

  • Ongkunaruk, Pornthipa
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.126-132
    • /
    • 2008
  • The bin packing problem (BPP) is an NP-Complete Problem. The problem can be described as there are $N=\{1,2,{\cdots},n\}$ which is a set of item indices and $L=\{s1,s2,{\cdots},sn\}$ be a set of item sizes sj, where $0<sj{\leq}1$, ${\forall}j{\in}N$. The objective is to minimize the number of bins used for packing items in N into a bin such that the total size of items in a bin does not exceed the bin capacity. Assume that the bins have capacity equal to one. In the past, many researchers put on effort to find the heuristic algorithms instead of solving the problem to optimality. Then, the quality of solution may be measured by the asymptotic worst-case ratio or the average-case ratio. The First Fit Decreasing (FFD) is one of the algorithms that its asymptotic worst-case ratio equals to 11/9. Many researchers prove the asymptotic worst-case ratio by using the weighting function and the proof is in a lengthy format. In this study, we found an easier way to prove that the asymptotic worst-case ratio of the First Fit Decreasing (FFD) is not more than 11/9. The proof comes from two ideas which are the occupied space in a bin is more than the size of the item and the occupied space in the optimal solution is less than occupied space in the FFD solution. The occupied space is later called the weighting function. The objective is to determine the maximum occupied space of the heuristics by using integer programming. The maximum value is the key to the asymptotic worst-case ratio.