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A NEW MEAN VALUE RELATED TO D. H. LEHMER’S

PROBLEM AND KLOOSTERMAN SUMS

Di Han and Wenpeng Zhang

Abstract. Let q > 1 be an odd integer and c be a fixed integer with
(c, q) = 1. For each integer a with 1 ≤ a ≤ q − 1, it is clear that there
exists one and only one b with 0 ≤ b ≤ q − 1 such that ab ≡ c (mod q).
Let N(c, q) denote the number of all solutions of the congruence equation

ab ≡ c (mod q) for 1 ≤ a, b ≤ q−1 in which a and b are of opposite parity,

where b is defined by the congruence equation bb ≡ 1 (modq). The main
purpose of this paper is using the mean value theorem of Dirichlet L-
functions to study the mean value properties of a summation involving
(

N(c, q)− 1
2
φ(q)

)

and Kloosterman sums, and give a sharper asymptotic
formula for it.

1. Introduction

Let p be an odd prime and c be a fixed integer with (c, p) = 1. For each
integer a with 1 ≤ a ≤ p − 1, it is clear that there exists one and only one b
with 0 ≤ b ≤ p− 1 such that ab ≡ c (mod p). Let M(c, p) denote the number
of cases in which a and b are of opposite parity. In reference [4], D. H. Lehmer
asked to study M(1, p) or at least to say something nontrivial about it. It is
known that M(1, p) ≡ 2 or 0 (mod 4) when p ≡ ±1 (mod 4). For general
odd number q ≥ 3, Wenpeng Zhang [6] studied the asymptotic properties of
M(1, q), and obtained a sharp asymptotic formula:

M(1, q) =
1

2
φ(q) +O

(

q
1

2 d2(q) ln2 q
)

,

where φ(q) denotes the Euler function, and d(q) is the number of divisors of q.
Recently, Wenpeng Zhang [9] considered the following problem: Let q be an

odd integer, c be any integer with (c, q) = 1, N(c, q) denote the number of
pairs of integers a, b with ab ≡ c (mod q) for 1 ≤ a, b ≤ q − 1 in which a and
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b are of opposite parity, and

E(c, q) = N(c, q)− 1

2
φ(q).

Then he studied the computational problem of the mean value
q
∑

c=1
(c,q)=1

Rq(c+ 1)E(c, q),

where Rq(c) denotes the Ramanujan’s sum, defined as (see Theorem 8.6 of [1]):

Rq(c) =

q
∑

k=1
(k,q)=1

e
2πikc

q =
∑

d|(c,q)

dµ(q/d),

where µ(n) is the famous Möbius function. Using the elementary and analytic
methods, Wenpeng Zhang [9] proved the following conclusion:

Let q ≥ 3 be an odd square-full number (that is, for any prime p, p|q if and
only if p2|q). Then we have the identity

q
∑

c=1
(c,q)=1

Rq(c+ 1)E(c, q) =
1

2
φ2(q)

∏

p|q

(

1 +
1

p

)

,

where
∏

p|q

denotes the product over all prime divisors of q.

In this paper, we consider the asymptotic properties of the hybrid mean
value related to D. H. Lehmer’s problem and Kloosterman sums:

q
∑′

m=1

q
∑′

n=1

K(mu,m; q)K(nu, n; q) · E
(

m2n2, q
)

,(1)

where K(m,n; q) =
∑′q

a=1 e
(

ma+na
q

)

denotes Kloosterman sums, e(y) = e2πiy

and a denotes the positive integer solution of the congruence equation xa ≡
1 mod q.

About the asymptotic properties of (1), it seems that none had studied it yet,
at least we have not seen any related result before. In this paper, we shall use
the analytic methods and the estimation of Dirichlet character of polynomials
to study this problem, and give an interesting asymptotic formula for it. That
is, we shall prove the following conclusions:

Theorem 1. Let p be an odd prime. Then for any integer u with (u, p) = 1,
we have the asymptotic formula

p−1
∑

m=1

p−1
∑

n=1

K(mu,m; p)K(nu, n; p) ·E
(

m2n2, p
)

= −p3 +O
(

p
5

2 · ln2 p
)

.
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Theorem 2. Let p be an odd prime with p ≡ 3 mod 4. Then for any non-

principal even character χ mod p, we have the identity

p−1
∑

m=1

∣

∣

∣

∣

∣

p−1
∑

a=1

χ (ma+ a)

∣

∣

∣

∣

∣

2

· E(m2, p) = −p ·
(

20− 16

(

2

p

))

· h2
p,

where hp denotes the class number of the quadratic field Q(
√−p), and

(

∗
p

)

denotes the Legendre’s symbol.

It is very interesting that from our Theorem 2 we can give a new expression
for the class number of the quadratic field Q(

√−p), i.e.,

h2
p =

−1

p
(

20− 16
(

2
p

))

p−1
∑

m=1

∣

∣

∣

∣

∣

p−1
∑

a=1

χ (ma+ a)

∣

∣

∣

∣

∣

2

·E(m2, p)

holds for any non-principal character χ mod p with p ≡ 3 mod 4.

2. Several lemmas

In this section, we shall give several lemmas, which are necessary in the proof
of our theorems. First we have the following:

Lemma 1. Let p > 1 be an odd prime. Then for any integer c with (c, p) = 1,
we have the identity

E(c, p) = − 2

π2
· p

p− 1
·

∑

χ mod p

χ(−1)=−1

χ(c) · |1− 2χ(2)|2 · |L(1, χ)|2 ,

where
∑

χ mod p

χ(−1)=−1

denotes the summation over all odd characters χ mod p.

Proof. From the orthogonality relation for character sums mod p and the def-
inition of N(c, p), we have

N(c, p) =
1

2

p
∑

a=1

p
∑

b=1
ab≡c mod p

(

1− (−1)a+b
)

=
1

2
φ(p)− 1

2

p
∑

a=1

p
∑

b=1
ab≡c mod p

(−1)a+b

=
1

2
φ(p)− 1

2φ(p)

∑

χ mod p

χ(c)

(

p
∑

a=1

(−1)aχ(a)

)(

p
∑

b=1

(−1)bχ(b)

)

=
1

2
φ(p)− 1

2φ(p)

∑

χ mod p

χ(c)

(

p
∑

a=1

(−1)aχ(a)

)(

p
∑

b=1

(−1)bχ(b)

)
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=
1

2
φ(p)− 1

2φ(p)

∑

χ mod p

χ(c)

(

p
∑

a=1

(−1)aχ(a)

)(

p
∑

b=1

(−1)bχ(b)

)

=
1

2
φ(p)− 1

2φ(p)

∑

χ mod p

χ(c)

∣

∣

∣

∣

∣

p
∑

a=1

(−1)aχ(a)

∣

∣

∣

∣

∣

2

.(2)

It is clear that
∑p

a=1(−1)aχ(a) = 0, if χ(−1) = 1. And
∑p

a=1(−1)aχ(a) =

2χ(2)
∑

p−1

2

a=1 χ(a), if χ(−1) = −1. For any odd character χ mod p, note that
the identities (see Theorems 12.11 and 12.20 of [1])

∣

∣

∣

∣

∣

1

p

p−1
∑

b=1

bχ(b)

∣

∣

∣

∣

∣

=

√
p

π
· |L(1, χ)|

and (see reference [3])

(1− 2χ(2))

p
∑

a=1

aχ(a) = χ(2)p

p−1

2
∑

a=1

χ(a).

From (2) and the definition of E(c, p) we may immediately deduce the identity

E(c, p) = − 2

π2
· p

p− 1
·

∑

χ mod p

χ(−1)=−1

χ(c) · |1− 2χ(2)|2 · |L(1, χ)|2 .

This proves Lemma 1. �

Lemma 2. Let p be an odd prime, χ be any non-principal even character

mod p. Then for any integer m with (m, p) = 1, we have the identity

∣

∣

∣

∣

∣

p−1
∑

a=1

χ (ma+ a)

∣

∣

∣

∣

∣

2

= 2p+

(

m

p

) p−1
∑

a=1

χ(a)

p−1
∑

b=1

(

b(b− 1)(a2b− 1)

p

)

,

where
(

∗
p

)

denotes the Legendre’s symbol.

Proof. Let am + a = u. Then from the definition of a and the properties of
congruence mod p we know that for any (m, p) = 1, we have

p−1
∑

a=1

χ (ma+ a) =

p−1
∑

u=1

χ(u)

p−1
∑

a=1
am+a≡u mod p

1 =

p−1
∑

u=1

χ(u)

p−1
∑

a=1
a2m2−amu+m≡0 mod p

1

=

p−1
∑

u=1

χ(u)

p−1
∑

a=0
(2am−u)2≡u2−4m mod p

1 =

p−1
∑

u=1

χ(u)

p−1
∑

a=0
a2≡u2−4m mod p

1.(3)
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Note that for any fixed integer u2 − 4m, the number of the solutions of the

congruent equation x2 ≡ u2 −m mod p are 1 +
(

u2−4m
p

)

, so from (3) we have

(4)

p−1
∑

a=1

χ (ma+ a)=

p−1
∑

u=1

χ(u)

(

1 +

(

u2 − 4m

p

))

=χ(2)

p−1
∑

u=1

χ(u)

(

u2 −m

p

)

.

Now from (4) and the properties of reduced residue system mod p we have
∣

∣

∣

∣

∣

p−1
∑

a=1

χ (ma+ a)

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

p−1
∑

u=1

χ(u)

(

u2 −m

p

)

∣

∣

∣

∣

∣

2

=

p−1
∑

a=1

p−1
∑

b=1

χ
(

ab
)

(

a2 −m

p

)(

b2 −m

p

)

=

p−1
∑

a=1

χ(a)

p−1
∑

b=1

(

a2b2 −m

p

)(

b2 −m

p

)

=

p−1
∑

a=1

χ(a)

p−1
∑

b=1

(

1 +

(

b

p

))(

a2b−m

p

)(

b−m

p

)

=

p−1
∑

a=1

χ(a)

p−1
∑

b=1

(

(a2b− 1)(b− 1)

p

)

+

(

m

p

) p−1
∑

a=1

χ(a)

p−1
∑

b=1

(

(a2b− 1)b(b− 1)

p

)

.(5)

Note that χ(−1) = 1. From the properties of the complete residue system
mod p we also have

p−1
∑

a=1

χ(a)

p−1
∑

b=1

(

(a2b− 1)(b− 1)

p

)

=

p−1
∑

a=1

χ(a)

p−1
∑

b=0

(

(2a2b− a2 − 1)2 − (a2 − 1)2

p

)

=

p−1
∑

a=1

χ(a)

p−1
∑

b=0

(

b2 − (a2 − 1)2

p

)

(6)

and

(7)

p
∑

a=1

(

a2 + n

p

)

=

{

−1, if (n, p) = 1;
p− 1, if (n, p) = p.

Combining (6) and (7) we can deduce the identity

(8)

p−1
∑

a=1

χ(a)

p−1
∑

b=1

(

(a2b− 1)(b− 1)

p

)

= 2(p− 1)−
p−2
∑

a=2

χ(a) = 2p.

Now Lemma 2 follows from (5) and (8). �
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Lemma 3. For any odd prime p, we have the estimate

p−1
∑

a=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

χ mod p

χ(−1)=−1

χ(a)|L(1, χ)|2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= O (p · ln p) .

Proof. See Lemma 1 of [8]. �

3. Proof of the theorems

In this section, we shall complete the proof of our theorems. First we prove
Theorem 1. From the properties of the classical Gauss sums we know that
|τ(χ)| = √

p, if χ is not a principal character mod p. And |τ(χ)| = 1, if χ = χ0

is the principal character mod p. If χ(−1) = −1, then χ2 must be an even
character mod p. So from Lemma 1 and the definition of Gauss sums we have

p−1
∑

m=1

p−1
∑

n=1

K(mu,m; p)K(nu, n; p) ·E
(

m2n2, p
)

(9)

=
2

π2

−p

p− 1

∑

χ mod p

χ(−1)=−1

∣

∣

∣

∣

∣

p−1
∑

m=1

χ2(m)

p−1
∑

a=1

e
(

mua+ma
p

)

∣

∣

∣

∣

∣

2

· |1− 2χ(2)|2 · |L(1, χ)|2

=
2

π2

−p

p− 1

∑

χ mod p

χ(−1)=−1

∣

∣

∣

∣

∣

p−1
∑

a=1

p−1
∑

m=1

χ2(m)e
(

m(ua+a)
p

)

∣

∣

∣

∣

∣

2

· (5− 4χ(2)) · |L(1, χ)|2

=
2

π2

−p

p− 1

∑

χ mod p

χ(−1)=−1

∣

∣τ(χ2)
∣

∣

2

∣

∣

∣

∣

∣

p−1
∑

a=1

χ2 (ua+ a)

∣

∣

∣

∣

∣

2

· (5− 4χ(2)) · |L(1, χ)|2

=
2

π2

−p2

p− 1

∑

χ mod p

χ(−1)=−1

χ2 6=χ0

∣

∣

∣

∣

∣

p−1
∑

a=1

χ2 (ua+ a)

∣

∣

∣

∣

∣

2

· (5− 4χ(2)) · |L(1, χ)|2

− 1

π2

p

p− 1

(

1−
(−1

p

))

∣

∣

∣

∣

∣

p−1
∑

a=1

χ0 (ua+ a)

∣

∣

∣

∣

∣

2
(

5− 4

(

2

p

))

|L(1, χ2)|2,

where we have used the identity
∑p−1

m=1 χ(m)e
(

ma
p

)

= χ(a)
∑p−1

m=1 e
(

m
p

)

=

χ(a)τ(χ).
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Note that the number of the solutions of the congruent equation a2u+ 1 ≡
0 mod p is 1 +

(

−u
p

)

, L(1, χ2) = πhp/
√
p, so we have

(10)

∣

∣

∣

∣

∣

p−1
∑

a=1

χ0 (ua+ a)

∣

∣

∣

∣

∣

2

|L(1, χ2)|2 =
1

p

(

p− 2−
(−u

p

))2

· π2 · h2
p,

where hp denotes the class number of the quadratic field Q(
√−p).

For any integer a, from the classical estimate of Weil (see [2]) we have the
estimate

(11)

∣

∣

∣

∣

∣

p−1
∑

b=1

(

b(b− 1)(ab− 1)

p

)

∣

∣

∣

∣

∣

≪ √
p · ln p

and the identities (see [5], [7] or [9])

∑

χ mod p

χ(−1)=−1

|L(1, χ)|2 =
π2

12
· (p− 1)2(p− 2)

p2
,(12)

∑

χ mod p

χ(−1)=−1

χ(2)|L(1, χ)|2 =
π2

24

(p− 1)2(p− 5)

p2
.(13)

If p ≡ 1 mod 4, note that there does not exist character χ mod p with
χ(−1) = −1 such that χ2 = χ0. So applying (11), (12), (13), Lemma 1 and
Lemma 3 we have

∑

χ mod p

χ(−1)=−1

χ2 6=χ0

∣

∣

∣

∣

∣

p−1
∑

a=1

χ2 (ua+ a)

∣

∣

∣

∣

∣

2

· (5− 4χ(2)) · |L(1, χ)|2

(14)

=
∑

χ mod p

χ(−1)=−1

∣

∣

∣

∣

∣

p−1
∑

a=1

χ2 (ua+ a)

∣

∣

∣

∣

∣

2

· (5− 4χ(2)) · |L(1, χ)|2

= 2p
∑

χ mod p

χ(−1)=−1

(5− 4χ(2)) · |L(1, χ)|2

+
∑

χ mod p

χ(−1)=−1

(

u
p

)

p−1
∑

a=1

χ2(a)

p−1
∑

b=1

(

b(b−1)(a2b−1)
p

)

· (5 − 4χ(2)) · |L(1, χ)|2
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=
(

u
p

)

p−1
∑

a=1

(

1 +
(

a
p

))

p−1
∑

b=1

(

b(b−1)(ab−1)
p

)

∑

χ mod p

χ(−1)=−1

(5χ(a)− 4χ(2a)) · |L(1, χ)|2

+
5π2

6
· (p− 1)2(p− 2)

p
− 2π2

6
· (p− 1)2(p− 5)

p

=
π2

2
· (p− 1)2 +O











p−1
∑

a=1

∣

∣

∣

∣

∣

p−1
∑

b=1

(

b(b−1)(ab−1)
p

)

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

χ mod p

χ(−1)=−1

χ(a)|L(1, χ)|2

∣

∣

∣

∣

∣

∣

∣

∣

∣











+O











p−1
∑

a=1

∣

∣

∣

∣

∣

p−1
∑

b=1

(

b(b−1)(ab−1)
p

)

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

χ mod p

χ(−1)=−1

χ(2a)|L(1, χ)|2

∣

∣

∣

∣

∣

∣

∣

∣

∣











=
π2

2
· p2 +O

(

p
3

2 · ln2 p
)

.

Now combining (9) and (14) we may immediately deduce the asymptotic for-
mula

(15)

p−1
∑

m=1

p−1
∑

n=1

K(mu,m; p)K(nu, n; p) ·E
(

m2n2, p
)

= −p3 +O
(

p
5

2 · ln2 p
)

.

If p ≡ −1 mod 4, note that hp = O
(√

p · ln p
)

, from (9), (10) and the method
of proving (14) we can also deduce that the asymptotic formula (15) holds.
This completes the proof of Theorem 1.

Now we prove Theorem 2. For any non-principal even character χ1 mod p,
from Lemma 1 and Lemma 2 we have

p−1
∑

m=1

∣

∣

∣

∣

∣

p−1
∑

a=1

χ1 (ma+ a)

∣

∣

∣

∣

∣

2

·E(m2, p)

(16)

=
2

π2
· −p

p− 1

∑

χ mod p

χ(−1)=−1

p−1
∑

m=1

χ2(m)

∣

∣

∣

∣

∣

p−1
∑

a=1

χ1 (ma+ a)

∣

∣

∣

∣

∣

2

· |1− 2χ(2)|2 · |L(1, χ)|2

=
4

π2
· −p2

p− 1

∑

χ mod p

χ(−1)=−1

(

p−1
∑

m=1

χ2(m)

)

· (5− 4χ(2)) · |L(1, χ)|2

− 2

π2
· p

p− 1

∑

χ mod p

χ(−1)=−1

(

p−1
∑

m=1

χ2(m)
(

m
p

)

)

· (5− 4χ(2)) · |L(1, χ)|2
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×
(

p−1
∑

a=1

χ1(a)

p−1
∑

b=1

(

b(b−1)(a2b−1)
p

)

)

.

Note that if p ≡ 3 mod 4, then for any χ mod p with χ(−1) = −1, we have

p−1
∑

m=1

χ2(m)

(

m

p

)

= 0.

And if χ =
(

∗
p

)

, then
∑p−1

m=1 χ
2(m) = p−1; If χ 6=

(

∗
p

)

, then
∑p−1

m=1 χ
2(m) = 0.

So from (16) and L(1, χ2) = πhp/
√
p we may immediately deduce the identity

p−1
∑

m=1

∣

∣

∣

∣

∣

p−1
∑

a=1

χ1 (ma+ a)

∣

∣

∣

∣

∣

2

· E(m2, p)

= − 4p

(

5− 4

(

2

p

))

· h2
p = −p ·

(

20− 16

(

2

p

))

· h2
p.

This completes the proof of Theorem 2.
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