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NUMERICAL METHOD FOR SINGULARLY PERTURBED

THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS OF

REACTION-DIFFUSION TYPE

J. CHRISTY ROJA AND A. TAMILSELVAN∗

Abstract. In this paper, we have proposed a numerical method for Singu-
larly Perturbed Boundary Value Problems (SPBVPs) of reaction-diffusion
type of third order Ordinary Differential Equations (ODEs). The SPBVP
is reduced into a weakly coupled system of one first order and one second

order ODEs, one without the parameter and the other with the parameter
ε multiplying the highest derivative subject to suitable initial and bound-
ary conditions, respectively. The numerical method combines boundary

value technique, asymptotic expansion approximation, shooting method
and finite difference scheme. The weakly coupled system is decoupled by
replacing one of the unknowns by its zero-order asymptotic expansion. Fi-
nally the present numerical method is applied to the decoupled system. In

order to get a numerical solution for the derivative of the solution, the do-
main is divided into three regions namely two inner regions and one outer
region. The Shooting method is applied to two inner regions whereas for
the outer region, standard finite difference (FD) scheme is applied. Neces-

sary error estimates are derived for the method. Computational efficiency
and accuracy are verified through numerical examples. The method is easy
to implement and suitable for parallel computing. The main advantage of
this method is that due to decoupling the system, the computation time is

very much reduced.
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1. Introduction

The numerical treatment of Singularly Perturbed Problems (SPPs) has
received significant attention in recent years. These problems arise frequently
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in fluid dynamics, elasticity, chemical reactor theory and many other applied
areas. For long decades, a good number of research papers have been appearing
in the field :’Numerical methods for singularly perturbed second order ordinary
differential equations’, but only few authors have developed numerical methods
for singularly perturbed higher order differential equations.

Analytical treatment of SPBVPs for the higher order non-linear ODEs
which have important applications in fluid dynamics is available in ([3],[7],[17],[24],
[30]). O’Malley [18] discussed the existence, uniqueness and asymptotic esti-
mates of the solution of higher order SPBVPs of the form

ε(m−n){y(m) + α1(x)y
(m−1) + ...+ αm(x)y}+ β(x){y(n) + β1(x)y

(n−1)

+....+ βn(x)y} = 0,

on the interval Ω̄ = [0, 1] and the boundary conditions

y(λi)(0) = li, i = 1, 2, ..., r, y(λi)(1) = li, i = r + 1, ...,m,

with the assumption that β(x) ̸= 0, m > n and the coefficients are real
and infinitely differentiable throughout Ω̄. In [19], the author discussed the
asymptotic solutions of linear scalar equations of higher order.

Niederdrenk and Yserentant [17] have considered a convection-diffusion
type equation and constructed a difference scheme on a variable mesh and de-
rived conditions equivalent to stability of the discrete problem under certain
assumptions.

Howes [4] established the existence and comparison results on certain bound-
ary value problems for nth order scalar nonlinear differential equations and their
system analogues. He also applied this theory to several classes of singularly
perturbed boundary value problems of higher order.

Michal Feckan [7] discussed the existence and asymptotic estimates solu-
tions of SPBVPs of the type

ε2y(n) = f(x, y, ..., y(n−3), y(n−2)), n ≥ 3,

By = 0, Ly = 0, x ∈ Ω = (0, 1),

where L is a linear two-point boundary value condition for derivatives upto or-
der (n − 3) and B has one of the following forms: i) y(n−2)(0) = y(n−2)(1) =
0, ii) y(n−2)(0) = y(n−1)(1) = 0, iii) y(n−1)(0) = y(n−2)(1) = 0. Further-
more, he used an approach based on fixed point theory, Leray-Schauder degree
theory and the implicit function theorem to show the existence of the solution
and to investigate the asymptotic behaviour of the solution of the above BVP. In
[8], Feckan considered singularly perturbed higher order ODEs and he has also
established lower bounds of the number of parameters for which these equations
possess a solution.

Gartland [3] considered the numerical approximation of differential opera-

tors of the form Lεu = εu(m)+
∑m−1

ν=0 aνu
(ν) with out turning points. He showed

that the uniform stability of the discrete boundary value problem follows from
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uniform stability of an associated discrete initial value problem and uniform con-
sistency of the scheme. He has also proved that the uniform consistency requires
exponential fitting or a special grid or both. Further, he has shown that a fam-
ily of finite difference schemes based on an exponentially graded mesh and local
polynomial basis functions are of arbitrarily high uniform order of convergence.

In [24], an iterative method is described. Further, if the order of the equa-
tion is even, then a Finite Element Method (FEM) based on standard Cm−1

splines on a Shishkin mesh is reported in [31]. Also Semper [25], Roos [23]
and O’Malley [19] have considered fourth-order equation and applied a standard
FEM. In [24, 30], a FEM for convection and reaction type problems is described.
In [31, 30], Sun and Stynes presented FEMs on Shishkin meshes on higher-order
elliptic two point BVPs.

Motivated by the works of O’Malley, Zhao Weili, Howes and Feckan [4,
5, 7, 8, 18, 19, 38, 39], Shanthi and Ramanujam [26, 27, 28, 29] developed
various computational methods for solving SPPs for fourth order ODEs subject
to different types of boundary conditions.

Only very few authors have developed numerical methods for singularly
perturbed third order ordinary differential equations, that too on the analytical
behavior of the solution.

Zhao Weili [38] has considered a more general class of third order non-linear
SPBVPs and discussed the existence, uniqueness of the solution and obtained
asymptotic estimates using the theory of the differential inequalities.

In [5], Howes presented a study on the boundary and interior layer phenom-
ena exhibited by solutions of singularly perturbed third order boundary value
problems which govern the motion of thin liquid films subject to viscous, capil-
lary and gravitational forces and are of the form εy′′′ = f(y)y′ + g(x, y), a <
x < b, y(a, ε) = A, y′(a, ε) = C, y(b, ε) = B. The precise conditions specify-
ing where and when the third order derivative terms in the differential equations
that can be neglected were derived and improved estimates for the actual solu-
tions in terms of solutions of the lower order models were constructed. He also
presented a technique for replacing a third order problem with an asymptotically
equivalent second order one that may have wider applicability.

Nayfeh [15] presented perturbation techniques to find the asymptotic ex-
pansion solution for the third order problem considered in Howes [5]. Infact Zhao
Weili [38] has derived results on third order non-linear SPPs using differential
inequality theorems.

Based on the work of O’Malley, Zhao Weili, Howes and Feckan [4, 5, 7, 8,
18, 19, 38, 39], Valarmathi and Ramanujam [32, 33, 34, 35] developed various
numerical methods for solving SPPs for third order ODEs subject to different
types of boundary conditions. Roberts [22] has suggested a method for finding
solution for third order singularly perturbed ODEs.

The fundamental idea used in this method is the Boundary Value Technique
(BVT) discussed by many authors for second order, third order and fourth order
ODEs [21, 32, 27] in which the authors divided the interval [0, 1] into two
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subintervals namely [0, kε] and [kε, 1] where kε is taken as the approximate
width of the boundary layer. In the inner region [0, kε] they applied an EFFD
scheme of [1] and a classical finite difference scheme for the outer region [kε, 1].
They also presented error estimates for the numerical solution. This BVT gives
an excellant portrait of the solution, especially within the boundary layers which
can be seen in [27, 32].

Following the Boundary Value Technique (BVT) of Roberts [22], Vigo-
Aguiar [37], Valarmathi [32] and using the basic idea underlying the method
suggested in Khuri [40, 41], Jayakumar [6] and Natesan [10, 16] we in the present
paper, suggest a new computational method which makes use of the zero order
asymptotic expansion approximation, BVT and Shooting method to obtain a
numerical solution for the derivative of SPBVPs for third order ODEs of reaction-
diffusion type of the form:

−εy′′′
(x) + b(x)y′(x) + c(x)y(x) = f(x), x ∈ Ω, (1)

y(0) = p, y′′(0) = q, y′′(1) = r. (2)

where 0 < ε ≪ 1, b(x), c(x) are sufficiently smooth functions satisfying the
following conditions:

b(x) ≥ β, β > 0, (3)

0 ≥ c(x) ≥ −γ, γ > 0, (4)

β − 2γ ≥ γ′, for some γ′ > 0. (5)

with Ω = (0, 1), Ω0 = (0, 1], Ω̄ = [0, 1] and y ∈ C(3)(Ω)∩C(2)(Ω̄). Since the
problem (1)-(2) is of singularly perturbed in nature, classical numerical methods,
in general, fail to provide good approximate solution. In order to get a numerical
solution for the derivative of the solution of SPBVPs (1)-(2) numerically, we
divide the interval [0, 1] into three subintervals [0, τ ], [τ, 1− τ ] and [1− τ, 1].

Two inner region problems respectively defined in the intervals [0, τ ], [1−
τ, 1] are solved by shooting method and the boundary value problem (BVP)
corresponding to the outer region is solved based on the standard finite difference
scheme. It is quite natural to take τ and 1 − τ as the width of the boundary
layers which can be obtained or estimated [9]. The problems defined in the
intervals [0, τ ], [τ, 1−τ ] and [1−τ, 1] are independent of each other. Therefore,
these problems can be solved simultaneously, that is more suitable for parallel
computing.

This method is easy to implement, and further, we could give a full-fledged
theory (consistency, stability, convergence and error estimates) for the same. In
Section 2 some analytical results for the SPBVPs (1)-(2) are presented. Section
3 deals with derivative estimates of derivative of the solution. In Section 4 some
analytical and numerical results are derived for auxiliary second order SPBVPs
of reaction-diffusion type and description of the numerical method is also given.
The error estimates for the method are discussed in detail in Section 5. Section
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6 deals with non-linear problems. Numerical examples are presented in Section
7. Conclusions are drawn in the last section.

Through out this paper, we use C, with or without subscript to denote a
generic positive constant, which is independent of N and ε. We use h1 and
h3 for mesh sizes for the innner region problems and h2 for mesh size for
the outer region problem. We define ||.|| of w̄ = (w1, w2)

T ∈ R2 as ||w̄|| =
max{|w1|, |w2|} .

2. Preliminaries

The SPBVPs (1)-(2) can be transformed into an equivalent weakly coupled
system of the form:{

P1ȳ(x) ≡ y′1(x)− y2(x) = 0, x ∈ Ω0,

P2ȳ(x) ≡ −εy′′2 (x) + b(x)y2(x) + c(x)y1(x) = f(x), x ∈ Ω,
(6)

y1(0) = p, y′2(0) = q, y′2(1) = r, (7)

where ȳ = (y1, y2)
T , b(x), c(x), f(x) are sufficiently smooth functions sat-

isfying the above conditions (3)-(5). This transformation makes it possible to
establish the maximum principle theorems and stability results for the contin-
uous problem. In this section, we present a maximum principle for the above
problem. Using this, a stability result is derived. Further, an asymptotic expan-
sion approximation is constructed for the solution and a theorem is presented to
establish its accuracy.

Remark 2.1. The solution of the problem (6)-(7) exhibits twin boundary layers
of width O(

√
ε) occur at x = 0 and at x = 1 which are less severe because the

boundary conditions are prescribed for the derivative of the solution [24]. The
condition (3) says that the problem (6)-(7) is a non-turning point problem. The
condition (4) is known as the quasi-monotonicity condition [24]. The maximum
principle for the above problem (6)-(7) can be established using the conditions
(3)-(5).

2.1. Maximum Principle and Stability Result.

Theorem 2.1. (Maximum Principle).Consider the SPBVPs (6)-(7). Let
y1(0) ≥ 0, y′2(0) ≥ 0 and y′2(1) ≥ 0. Then P1ȳ(x) ≥ 0 for x ∈ Ω0 and
P2ȳ(x) ≥ 0 for x ∈ Ω implies that ȳ(x) ≥ 0 for all x ∈ Ω̄.

Proof. Define the test functions s̄(x) = (s1(x), s2(x))
T by

s1(x) =
1

2
+ ηx2 + x, s2(x) = 1 + ηx, x ∈ Ω̄ and 0 < η ≪ 1/2.

Clearly, s1(0) > 0, s′2(0) > 0, s′2(1) > 0.
We can easily prove that P1s̄ > 0 for x ∈ Ω0 and P2s̄ > 0 for x ∈ Ω .
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Assume that the theorem is not true. We define

ξ = max

{
max
x∈Ω̄

(
−y1
s1

)
(x), max

x∈Ω̄

(
−y2
s2

)
(x)

}
.

Then, ξ > 0. Also (y1 + ξs1)(x) ≥ 0 and (y2 + ξs2)(x) ≥ 0 for x ∈ Ω̄.
Furthermore, there exists a point, x0 ∈ Ω̄ such that

(y1 + ξs1)(x0) = 0 for x0 ∈ Ω0 or (y2 + ξs2)(x0) = 0 for x0 ∈ Ω.

Case 1: (y1 + ξs1)(x0) = 0 for x0 ∈ Ω0.
This implies that y1 + ξs1 attains its minimum at x = x0.
Then,

0 < P1(ȳ + ξs̄)(x0) = (y1 + ξs1)
′
(x0)− (y2 + ξs2)(x0) ≤ 0,

which is a contradiction.
Case 2: (y2 + ξs2)(x0) = 0 for x0 ∈ Ω.
This implies that y2 + ξs2 attains its minimum at x = x0.
Then,

0 < P2(ȳ+ξs̄)(x0) = −ε(y2+ξs2)
′′
(x0)+b(x)(y2+ξs2)(x0)+c(x)(y1+ξs1)(x0) ≤ 0,

which is a contradiction.
Hence it can be concluded that ȳ(x) ≥ 0, ∀x ∈ Ω̄. �
Lemma 2.2. (Stability Result).If ȳ(x) is the solution of the SPBVPs (6)-(7)
then

||ȳ(x)|| ≤ Cmax{|y1(0)|, |y′2(0)|, |y′2(1)|, max
x∈Ω0

|P1ȳ(x)|, max
x∈Ω

|P2ȳ(x)|},

∀x ∈ Ω̄.

Proof.

Set M = Cmax{|y1(0)|, |y′2(0)|, |y′2(1)|, max
x∈Ω0

|P1ȳ(x)|, max
x∈Ω

|P2ȳ(x)|}.

Defining two barrier functions w̄±(x) = (w±
1 (x), w

±
2 (x))

T by

w±
1 (x) = [

1

2
+ ηx2 + x]M ± y1(x) and w±

2 (x) = (1 + ηx)M ± y2(x).

We have

P1w̄
±(x) = w±

1
′(x)− w±

2 (x) =Mηx± P1ȳ(x) ≥ 0 and

P2w̄
±(x) = −εw±

2
′′(x) + b(x)w±

2 (x) + c(x)w±
1 (x),

≥M(β − 2γ)± P2ȳ(x) ≥Mγ′ ± P2ȳ(x) ≥ 0,

by a proper choice of the constant C. Furthermore, we have

w±
1 (0) =M/2± y1(0) ≥ 0, w±′

2 (0) =Mη ± y′2(0) ≥ 0,

w±
2

′(1) =Mη ± y′2(1) ≥ 0,

by a proper choice of constant C. Applying Theorem 2.1 to the barrier functions
w̄±(x), we get the desired result. �
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2.2. Asymptotic Expansion Approximation. We use an asymptotic ex-
pansion solution of the SPBVPs (6)-(7) in the form

ȳ(x, ε) = ū0(x) + v̄0(x) + w̄0(x) +
√
ε(ū1(x) + v̄1(x) + w̄1(x)) +O(ε).

By using the method of stretching variable [14] we can get a zero order asymp-
totic expansion approximation of (6)-(7) in the form ȳas = ū0(x)+ v̄0(x)+ w̄0(x)
where ū0(x) = (u01(x), u02(x))

T is the solution of the reduced problem of the
BVP (6)-(7) given by

u′01(x)− u02(x) = 0,

b(x)u02(x) + c(x)u01(x) = f(x),

u01(0) = p.

(8)

v̄0(x) = (v01(x), v02(x))
T is the left layer correction term that satisfies{

v′01(x)− v02(x) = 0,

−εv′′

02(x) + b(0)v02(x) = 0
(9)

and v̄0(x) is given by{
v01(x) = (−C1

√
ε exp(−x

√
b(0)/ε))/

√
b(0),

v02(x) = C1 exp(−x
√
b(0)/ε).

(10)

w̄0(x) = (w01(x), w02(x))
T is the right layer correction term that satisfies{
w′

01(x)− w02(x) = 0,

−εw′′

02(x) + b(1)w02(x) = 0
(11)

and w̄0(x) is given by{
w01(x) = (C2

√
ε exp(−(1− x)

√
b(1)/ε))/

√
b(1),

w02(x) = C2 exp(−(1− x)
√
b(1)/ε).

(12)

Note that

C1 = [(q − u′02(0))− (r − u′02(1)) exp(−
√
b(1)/ε)]/D,

C2 = [−(q − u′02(0)) exp(−
√
b(0)/ε) + (r − u′02(1))]/D,

where, D = [1− exp(−(
√
b(0) +

√
b(1))/

√
ε)]. The following theorem gives the

error bound for the difference between the solution of the SPBVPs (6)-(7) and
its zero order asymptotic expansion approximation.

Theorem 2.3. The zero order asymptotic expansion approximation ȳas = ū0(x)+
v̄0(x) + w̄0(x) of the solution ȳ(x) of the SPBVPs (6)-(7) defined by (8)-(12)
satisfies the inequality

||ȳ(x)− ȳas(x)|| ≤ C
√
ε, ∀x ∈ Ω̄.
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Proof. It is easy to prove that

|(y1 − y1as)(0)| ≤ C
√
ε, |(y2 − y2as)

′(0)| = 0 and |(y2 − y2as)
′(1)| = 0.

Further applying the differential operators it is easy to check with the following
expressions:

we have |P1(ȳ − ȳas)(x)| = 0 and

|P2(ȳ − ȳas)(x)| = |f(x)− P2ȳas(x)|,
= |f(x)− {−ε(u02 + v02 + w02)

′′(x)

+ b(x)(u02 + v02 + w02)(x) + c(x)(u01 + v01 + w01)(x)}|,

≤ ε|u′′02(x)|+ |
x
√
b(0)√
ε

|[
√
ε√
b(0)

]|b′(θ1)||v02(x)|

+ |
(1− x)

√
b(1)√

ε
|[

√
ε√
b(1)

]|b′(θ2)||w02(x)|

+ |c(x)|(|v01(x)|+ |w01(x)|),

where 0 < θ1 < x and 1 − x < θ2 < 1. Using the fact that t exp(−t) ≤
exp(−t/2), ∀t ≥ 0, the above expression reduces to

|P2(ȳ − ȳas)(x)| ≤ Cε+ C
√
ε[exp(−(x/2)

√
b(0)/ε)

+ exp(−((1− x)/2)
√
b(1)/ε)],

≤ C
√
ε.

From the stability result given by Lemma 2.2 it follows that

||ȳ(x)− ȳas(x)|| ≤ C
√
ε, ∀x ∈ Ω̄.

�

Corollary 2.4. If y1(x) is the solution of the SPBVPs (6)-(7) and u01(x) is
solution of the problem (8) then |y1(x)− u01(x)| ≤ C

√
ε, ∀x ∈ Ω̄.

Proof. From the above theorem, |y1(x)− (u01(x) + v01(x))| ≤ C
√
ε.

Consider, |y1(x)− u01(x)| = |y1(x)− u01(x) + v01(x)− v01(x)|,
≤ |y1(x)− (u01(x) + v01(x))|+ |v01(x)|,
≤ C1

√
ε+ C2

√
ε,

≤ C
√
ε.

�
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3. Estimates of derivatives

Theorem 3.1. Let ȳ(x) be the solution of the SPBVPs (6)-(7). Then y2(x)
satisfy

|y(k)2 (x)| ≤ C(1 + ε−(k/2)e(x, β)) (13)

for 0 ≤ k ≤ 3, where, e(x, β) = e−x
√

β/ε + e−(1−x)
√

β/ε, x ∈ Ω̄.

Proof. Consider the BVP

εy′′2 (x) + b(x)y2(x) + c(x)y1(x) = f(x), y′2(0) = q, y′2(1) = r.

Rewrite this BVP as

εy′′2 (x) + b(x)y2(x) = f(x)− c(x)y1(x), y′2(0) = q, y′2(1) = r.

Then, y1 ∈ C(2)(Ω̄) and using the procedure adopted in [12] we have |y(k)2 (x)| ≤
C(1 + ε−(k/2)e(x, β)), as required. �

4. Some analytical and numerical results for second order SPBVPs

We present some results for the following SPBVPs which are needed for the
rest of the paper. Consider the auxiliary second order SPBVPs

Ly⋆2(x) ≡ −εy⋆′′

2 (x) + b(x)y⋆2(x) = f(x)− c(x)u01(x), x ∈ Ω, (14)

B0y
⋆
2(0) ≡ y⋆

′

2 (0) = q, B1y
⋆
2(1) ≡ y⋆

′

2 (1) = r, (15)

where u01(x) is defined as in (8), b(x) and f(x) are sufficiently smooth and
b(x) ≥ β, β > 0, 0 ≥ c(x) ≥ −γ, γ > 0.

4.1. Analytical Results.

Theorem 4.1. (Maximum Principle).Consider the SPBVPs (14)-(15). Let
y⋆2(x) be a smooth function satisfying B0y

⋆
2(0) ≥ 0 , B1y

⋆
2(1) ≥ 0 and Ly⋆2(x) ≥

0 for x ∈ Ω. Then, y⋆2(x) ≥ 0, ∀x ∈ Ω̄.

Proof. Please refer [1]. �

Lemma 4.2. If y⋆2(x) is the solution of the SPBVPs (14)-(15) then

|y⋆2(x)| ≤ Cmax{|B0y
⋆
2(0)|, |B1y

⋆
2(1)|, max

x∈Ω
|Ly⋆2(x)|}, ∀x ∈ Ω̄.

Proof. Define the barrier functions ψ±(x) as

ψ±(x) = A′(1 + η′x)± y⋆2(x), x ∈ Ω̄,

where A′ = Cmax{|B0y
⋆
2(0)|, |B1y

⋆
2(1)|, max

x∈Ω
|Ly⋆2(x)|} and 0 < η′ ≪ 1/2.

It is easy to check that B0ψ
±(0) ≥ 0, B1ψ

±(1) ≥ 0 and Lψ±(x) ≥ 0 for a
proper choice of the constant C. Applying Theorem 4.1 to ψ±(x), the required
stability bound is obtained. �
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Theorem 4.3. If ȳ(x) and y⋆2(x) are solutions of the SPBVPs (6)-(7) and
(14)-(15) respectively, then

|y2(x)− y⋆2(x)| ≤ C
√
ε, ∀x ∈ Ω̄.

Proof. The second component y2(x) of the solution ȳ(x) of the BVP (6)-(7),
satisfies the BVP

−εy2′′(x) + b(x)y2(x) = f(x)− c(x)y1(x), x ∈ Ω, y
′

2(0) = q, y
′

2(1) = r.

Further, the function w(x) = y2(x)− y⋆2(x) satisfies the BVP

−εw′′(x) + b(x)w(x) = −c(x)[y1(x)− u01(x)], x ∈ Ω, w′(0) = 0, w′(1) = 0.

From the stability result as given in Doolen [1] we have,

|w(x)| ≤ C|y1(x)− u01(x)|.

From Theorem 2.3, |y1(x)− y1as(x)| ≤ C
√
ε.

That is, |y1(x)− u01(x)− v01(x)− w01(x)| ≤ C
√
ε.

Then, |y1(x)−u01(x)|− |v01(x)+w01(x)| ≤ |y1(x)−u01(x)−v01(x)−w01(x)|

implies that, |y1(x)− u01(x)| ≤ |v01(x) + w01(x)|+ C
√
ε ≤ C

√
ε.

That is |y1(x)− u01(x)| ≤ C
√
ε.

Therefore

|w(x)| ≤ C
√
ε.

Hence,

|y2(x)− y⋆2(x)| ≤ C
√
ε, ∀x ∈ Ω̄.

�

4.2. Description of the method. Step 1: An asymptotic approximation is
derived for the solution of (6)-(7) which is given by (8)-(12).
Step 2: The first component of the solution ȳ of the SPBVPs (6)-(7), namely
y1 is approximated by the first component of the solution of the reduced problem
namely u01 given by (8). Then replacing y1 appearing in the second equation
of (6) by u01 and taking the same boundary values, one gets the auxiliary SPB-
VPs (14)-(15). The solution of this problem is taken as an approximation to y2
which is the second equation of (6) which has to be solved.
Step 3: In order to solve the auxiliary second order problem (14)-(15) nu-
merically, we divide the interval [0, 1] into three subintervals [0, τ ], [τ, 1 − τ ]
and [1− τ, 1] . The subintervals [0, τ ], [1− τ, 1] are respectively called left and
right inner regions, whereas the subinterval [τ, 1 − τ ] is called outer region,

where, τ = min{1
4
,

√
ε

β
lnN}. Then, from the SPBVPs (14)-(15) three prob-

lems namely left inner region problem, right inner region problem and outer
region problem are derived. To find the boundary condition at x = τ , a zero
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order asymptotic expansion is used.
The left inner region problem for (14)-(15) is given by{

εy
′′

2 (x)− b(x)y2(x) = f(x) + c(x)u01(x), x ∈ (0, τ),

−y′2(0) = q, y2(τ) = u02(τ) + v02(τ) + w02(τ).
(16)

The outer region problem for (14)-(15) is given by
εy

′′

2 (x)− b(x)y2(x) = f(x) + c(x)u01(x), x ∈ (τ, 1− τ),

y2(τ) = u02(τ) + v02(τ) + w02(τ),

y2(1− τ) = u02(1− τ) + v02(1− τ) + w02(1− τ).

(17)

The right inner region problem for (14)-(15) is given by{
εy

′′

2 (x)− b(x)y2(x) = f(x) + c(x)u01(x), x ∈ (1− τ, 1),

y2(1− τ) = u02(1− τ) + v02(1− τ) + w02(1− τ), y′2(1) = r.
(18)

Step 4: The left inner region problem (16) is solved by the Shooting method
using the initial conditions y̆2(0) = u02(0)+ v02(0)+w02(0), y̆′2(0) = q . Here,
Shooting method in the sense that BVP (16) is replaced by the IVP (19) on the
interval [0, τ ].
Step 5: The right inner region problem (18) is solved by the Shooting method
using the initial conditions ỹ2(1) = u02(1)+v02(1)+w02(1), ỹ′2(1) = r . Here,
Shooting method in the sense that BVP (18) is replaced by the IVP (22) on the
interval [τ, 1].
Step 6: The outer region problem (17) subject to boundary conditions y2(τ) =
u02(τ) + v02(τ) + w02(τ), y2(1 − τ) = u02(1 − τ) + v02(1 − τ) + w02(1 − τ) is
solved by standard FD scheme.
Step 7: After solving both the inner region problems and the outer region
problem, we combine their solutions to obtain an approximate solution y2 for
the derivative of the original problem (1)-(2) over the interval Ω̄.

4.3. Numerical Schemes.

4.3.1. Left Inner Region Problem. Using Step 4 for the BVP (16), we get
the following IVP{

−εy̆′′

2 (x) + b(x)y̆2(x) = f(x)− c(x)u01(x), x ∈ (0, τ ],

y̆2(0) = q̄ = u02(0) + v02(0) + w02(0), y̆
′

2(0) = q.
(19)

This IVP is equivalent to the following system:
P ∗
1 ȳ

∗ ≡ y∗
′

1 (x)− y∗2(x) = 0,

P ∗
2 ȳ

∗ ≡ −εy∗2 ′(x) + b(x)y∗1(x) = f∗(x), x ∈ (0, τ ],

y∗1(0) = q̄, y∗2(0) = q.

(20)

where f∗(x) = f(x)− c(x)u01(x), u01(x) is defined as in (8), ȳ∗ = (y∗1 , y
∗
2)

T ,
b(x) ≥ β, β > 0, 0 ≥ c(x) ≥ −γ, γ > 0.
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Theorem 4.4. (Maximum Principle).Consider the IVP (20). Let y∗1(0) ≥
0 , y∗2(0) ≥ 0 and P ∗

1 ȳ
∗(x) ≥ 0, P ∗

2 ȳ
∗(x) ≥ 0 for x ∈ (0, τ ]. Then, ȳ∗(x) ≥ 0,

∀x ∈ [0, τ ].

Proof. Please refer [20]. �

Lemma 4.5. (Stability Result).If ȳ∗(x) is the solution of the IVP (20).
Then

||ȳ∗(x)|| ≤ Cmax{|y∗1(0)|, |y∗2(0)|, max
x∈(0,τ ]

|P ∗
1 ȳ

∗(x)|, max
x∈(0,τ ]

|P ∗
2 ȳ

∗(x)|},

for all x ∈ [0, τ ].

Proof.

Set A′ = Cmax{|y∗1(0)|, |y∗2(0)|, max
x∈(0,τ ]

|P ∗
1 ȳ

∗(x)|, max
x∈(0,τ ]

|P ∗
2 ȳ

∗(x)|}.

Defining two barrier functions χ̄∗±(x) = (χ∗±
1 (x), χ∗±

2 (x))T by

χ∗±
1 (x) = A′(1 + x+ x2)± y∗1(x) and χ∗±

2 (x) = A′ ± y∗2(x).

We have

P ∗
1 χ̄

∗±(x) = χ∗±
1

′(x)− χ∗±
2 (x) = A′(2x)± P ∗

1 ȳ
∗(x) ≥ 0 and

P ∗
2 χ̄

∗±(x) = −εχ∗±
2

′(x) + b(x)χ∗±
1 (x) ≥ βA′ ± P ∗

2 ȳ
∗(x) ≥ 0,

by a proper choice of C. Furthermore, we have

χ∗±
1 (0) = A′ ± y∗1(0) ≥ 0, χ∗±

2 (0) = A′ ± y∗2(0) ≥ 0, by a proper choice of C.

Applying Theorem 4.4 to the barrier functions χ̄∗±(x), we get the desired result.
�

Theorem 4.6. Consider the solution ȳ∗(x) of the IVP (20). Then y∗1(x) and
y∗2(x) satisfy

|y∗(k)1 (x)| ≤ Cε−(k−1)/2e(x, β), |y∗(k)2 (x)| ≤ Cε−(k)/2e(x, β) for 0 ≤ k ≤ 2,

x ∈ (0, τ ], where e(x, β) = e−x
√

β/ε + e−(1−x)
√

β/ε.

Proof. For k = 0, the result follows from Lemma 4.5. From (20), it is evident

that |y∗′

1 (x)| ≤ Ce(x, β) and |y∗′

2 (x)| ≤ Cε−1/2e(x, β). Differentiating the equa-

tions (20) once and using the above estimates of |y∗′

1 (x)| and |y∗′

2 (x)|, it is found
that |y∗′′

1 (x)| ≤ Cε−1/2e(x, β) and |y∗′′

2 (x)| ≤ Cε−1e(x, β). �

Applying Euler’s finite difference scheme for (20), we get
P

∗N/4
1 ȳ∗i = D−y∗1,i − y∗2,i = 0,

P
∗N/4
2 ȳ∗i = −εD−y∗2,i + b(xi)y

∗
1,i = f∗(xi) for 1 ≤ i ≤ N/4,

y∗1,0 = q̄, y∗2,0 = q,

(21)

where, D−y∗j,i = (y∗j,i−y∗j,i−1)/h1, j = 1, 2, h1 =
4τ

N
, xi = ih1, 1 ≤ i ≤ N/4.
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Here, τ is the transition parameter τ = min{1
4
,

√
ε

β
lnN}. This fitted mesh is

denoted by Ω̄
N/4
τ .

Theorem 4.7. (Discrete Maximum Principle). Consider the discrete IVP

(21). Let y∗1,0 ≥ 0, y∗2,0 ≥ 0. Then P
∗N/4
1 ȳ∗i ≥ 0 and P

∗N/4
2 ȳ∗i ≥ 0 for 1 ≤

i ≤ N/4, implies that ȳ∗i ≥ 0 for 0 ≤ i ≤ N/4.

Proof. Please refer [20]. �

Lemma 4.8. (Stability Result).Consider the discrete IVP (21). If ȳ∗i is any
mesh function, then

||ȳ∗i || ≤ Cmax{|y∗1,0|, |y∗2,0|, max
1≤i≤N/4

|P ∗N/4
1 ȳ∗i |, max

1≤i≤N/4
|P ∗N/4

2 ȳ∗i |},

for 0 ≤ i ≤ N/4.

Proof.

Set M ′ = Cmax{|y∗1,0|, |y∗2,0|, max
1≤i≤N/4

|P ∗N/4
1 ȳ∗i |, max

1≤i≤N/4
|P ∗N/4

2 ȳ∗i |},

Defining two barrier functions χ̄∗±
i = (χ∗±

1,i , χ
∗±
2,i )

T by

χ∗±
1,i =M ′{1 + xi + x2i } ± y∗1,i and χ∗±

2,i (x) =M ′ ± y∗2,i, 0 ≤ i ≤ N/4.

Then, applying Theorem 4.7 to χ̄∗±
i for a proper selection of the constant C, we

can obtain the desired bound for ȳ∗i . �

4.3.2. Right Inner Region Problem. Using Step 5 for the BVP (18), we
get the following IVP{

−εỹ′′

2 (x) + b(x)ỹ2(x) = f(x)− c(x)u01(x), x ∈ [1− τ, 1),

ỹ2(1) = r̄ = u02(1) + v02(1) + w02(1), ỹ′2(1) = r.
(22)

This IVP is equivalent to the following system:
P ∗∗
1 ȳ∗∗ ≡ y∗∗

′

1 (x)− y∗∗2 (x) = 0,

P ∗∗
2 ȳ∗∗ ≡ −εy∗∗2 ′(x) + b(x)y∗∗1 (x) = f∗(x), x ∈ [1− τ, 1),

y∗∗1 (1) = r̄, y∗∗2 (1) = r.

(23)

where f∗(x) = f(x)−c(x)u01(x), u01(x) is defined as in (8), ȳ∗∗ = (y∗∗1 , y∗∗2 )T ,
b(x) ≥ β, β > 0, 0 ≥ c(x) ≥ −γ, γ > 0.

Theorem 4.9. (Maximum Principle).Consider the IVP (23). Let y∗∗1 (1) ≥
0 , y∗∗2 (1) ≥ 0 and P ∗∗

1 ȳ∗∗(x) ≥ 0 and P ∗∗
2 ȳ∗∗(x) ≥ 0 for x ∈ [1 − τ, 1).

Then, ȳ∗∗(x) ≥ 0 for x ∈ [1− τ, 1].

Proof. Please refer [20]. �
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Lemma 4.10. (Stability Result).If ȳ∗∗(x) is the solution of the IVP (23).
Then,

||ȳ∗∗(x)|| ≤ Cmax{|y∗∗1 (1)|, |y∗∗2 (1)|, max
x∈[1−τ,1)

|P ∗∗
1 ȳ∗∗(x)|, max

x∈[1−τ,1)
|P ∗∗

2 ȳ∗∗(x)|},

∀x ∈ [1− τ, 1].

Proof.

Set A′′ = Cmax{|y∗∗1 (1)|, |y∗∗2 (1)|, max
x∈[1−τ,1)

|P ∗∗
1 ȳ∗∗(x)|, max

x∈[1−τ,1)
|P ∗∗

2 ȳ∗∗(x)|}.

Defining two barrier functions χ̄∗∗±(x) = (χ∗∗±
1 (x), χ∗∗±

2 (x))T by

χ∗∗±
1 (x) = A′′(1 + 2x)± y∗∗1 (x) and χ∗∗±

2 (x) = A′′ ± y∗∗2 (x).

We have

P ∗∗
1 χ̄∗∗±(x) = χ∗∗±

1
′(x)− χ∗∗±

2 (x) = A′′ ± P ∗∗
1 ȳ∗∗(x) ≥ 0 and

P ∗∗
2 χ̄∗∗±(x) = −εχ∗∗±

2
′(x) + b(x)χ∗∗±

1 (x) ≥ βA′′ ± P ∗∗
2 ȳ∗∗(x) ≥ 0,

by a proper choice of C. Furthermore, we have

χ∗∗±
1 (1) = 3A′′ ± y∗∗1 (1) ≥ 0, χ∗∗±

2 (1) = A′′ ± y∗∗2 (1) ≥ 0,

by a proper choice of C. Applying Theorem 4.9 to the barrier functions χ̄∗∗±(x),
we get the desired result. �

Theorem 4.11. Consider the solution ȳ∗∗(x) of the IVP (23). Then y∗∗1 (x)
and y∗∗2 (x) satisfy

|y∗∗(k)1 (x)| ≤ Cε−(k−1)/2e(x, β), |y∗∗(k)2 (x)| ≤ Cε−(k/2)e(x, β)

for 0 ≤ k ≤ 2, x ∈ [1− τ, 1), where e(x, β) = e−x
√

β/ε + e−(1−x)
√

β/ε.

Proof. Proof is similar as Theorem 4.6. �

Applying Euler’s finite difference scheme for (23), we get
P

∗∗N/4
1 ȳ∗∗ ≡ D+y∗∗1,i − y∗∗2,i = 0,

P
∗∗N/4
2 ȳ∗∗ ≡ −εD+y∗∗2,i + b(xi)y

∗∗
1,i = f∗(xi) for 0 ≤ i ≤ N/4− 1,

y∗∗1,N/4 = r̄, y∗∗2,N/4 = r.

(24)

where, D+yj,i = (yj,i+1 − yj,i)/h3, j = 1, 2, h3 =
4τ

N
, xi = (1− τ) + ih3,

0 ≤ i ≤ N/4 − 1. Here, τ is the transition parameter defined as before. This

fitted mesh is denoted by Ω̄
N/4
τ .

Theorem 4.12. (Discrete Maximum Principle). Consider the discrete IVP

(24). Let y∗∗1,N/4 ≥ 0, y∗∗2,N/4 ≥ 0. Then P
∗∗N/4
1 ȳ∗∗i ≥ 0 and P

∗∗N/4
2 ȳ∗∗i ≥

0 for 0 ≤ i ≤ N/4− 1 implies that ȳ∗∗i ≥ 0 for 0 ≤ i ≤ N/4.

Proof. Please refer [20]. �
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Lemma 4.13. (Stability Result).Consider the discrete IVP (24). If ȳ∗∗i is
any mesh function, then

||ȳ∗∗i || ≤ Cmax{|y∗∗1,N/4|, |y
∗∗
2,N/4|, max

0≤i≤N/4−1
|P ∗∗N/4

1 ȳ∗∗i | max
0≤i≤N/4−1

|P ∗∗N/4
2 ȳ∗∗i |},

for 0 ≤ i ≤ N/4.

Proof.

Set A′′ = Cmax{|y∗∗1,N/4|, |y
∗∗
2,N/4|, max

0≤i≤N/4−1
|P ∗∗N/4

1 ȳ∗∗i |, max
0≤i≤N/4−1

|P ∗∗N/4
2 ȳ∗∗i |},

Defining the barrier functions χ̄∗∗±
i = (χ∗∗±

1,i , χ
∗∗±
2,i )T by

χ∗∗±
1,i = A′′{1 + 2xi} ± y∗∗1,i and χ∗∗±

2,i (x) = A′′ ± y∗∗2,i for 0 ≤ i ≤ N/4.

Applying Theorem 4.12 to χ̄∗∗±
i for a proper selection of the constant C, we

can obtain the desired bounds for ȳ∗∗i . �

4.3.3. Outer Region Problem. The outer region problem for (14)-(15) is
given by

Ly2(x) =


−εy′′

2 (x) + b(x)y2(x) = f(x)− c(x)u01(x), x ∈ (τ, 1− τ),

B0y2(0) = y2(τ) = u02(τ) + v02(τ) + w02(τ) = q∗,

B0y2(1) = y2(1− τ) = u02(1− τ) + v02(1− τ) + w02(1− τ) = r∗,

(25)

where b(x) and f(x) are sufficiently smooth and b(x) ≥ β, β > 0, 0 ≥
c(x) ≥ −γ, γ > 0.

Theorem 4.14. (Maximum Principle).Consider the BVP (25). Let y2(x)
be a smooth function satisfying B0y2(0) ≥ 0, B1y2(1) ≥ 0 and Ly2(x) ≥
0 for x ∈ (τ, 1− τ). Then, y2(x) ≥ 0 for x ∈ [τ, 1− τ ].

Proof. Please refer [1]. �

Lemma 4.15. (Stability result).If y2(x) is the solution of the BVP (25) then

|y2(x)| ≤ Cmax{|B0y2(0)|+ |B1y2(1)|+ max
x∈(τ,1−τ)

|Ly2(x)|}, ∀x ∈ [τ, 1− τ ].

Proof. [1]. �

To solve this BVP, we apply standard FD scheme defined by{
LN/2y2,i := −εδ2y2,i + b(xi)y2,i = f(xi)− c(xi)u01(xi), 1 ≤ i ≤ N/2− 1,

B
N/2
0 y2,0 = y2,0 = q∗, B

N/2
1 y2,N = y2,N/2 = r∗,

(26)

where δ2y2,i = (y2,i+1 − 2y2,i + y2,i−1)/h
2
2, xi = τ + ih2 and h2 = 2(1 −

2τ)/N, 1 ≤ i ≤ N/2− 1.
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Theorem 4.16. (Discrete Maximum Principle).Consider the discrete BVP

(26). If B
N/2
0 y2,0 ≥ 0, B

N/2
1 y2,N/2 ≥ 0 and LN/2y2,i ≥ 0 for 1 ≤ i ≤ N/2−1.

Then y2,i ≥ 0 for 1 ≤ i ≤ N/2.

Proof. Please refer [1]. �

Lemma 4.17. (Discrete Stability Result).If y2,i is the solution of the BVP
(26) then

|y2,i| ≤ Cmax{|BN/2
0 y2,0|+|BN/2

1 y2,N/2|+ max
1≤i≤N/2−1

|LN/2y2,i|}, for 0 ≤ i ≤ N/2.

Proof. Please refer [1]. �

5. Error Estimates

In this section, we derive error estimates for the solution of (14)-(15).

5.1. Inner region problems. In order to derive error estimate for the
solution of the inner region problems we prove the following theorems.

Error estimates for Left Inner Region Problem.

Theorem 5.1. Let ȳ∗ = (y∗1 , y2
∗)T and ȳ∗i = (y∗1,i, y

∗
2,i)

T be, respectively, the
solutions of (20) and (21). Then,

||ȳ∗(xi)− ȳ∗i || ≤ CN−1 lnN for 0 ≤ i ≤ N/4, xi ∈ Ω̄N/4
τ .

Proof. From Lemma 4.1 in [9] and Theorem 4.6 it is clear that for each i, the

consistency errors due to ȳ∗ with P
∗N/4
1 and P

∗N/4
2 are bounded as given below.

|P ∗N/4
1 (ȳ∗(xi)− ȳ∗i )| = |(D− −D)y∗1(xi)|,

=
h1
2
|y∗

′′

1 (t)|,

=
h1
2
√
ε
e(x, β), (27)

and |P ∗N/4
2 (ȳ∗(xi)− ȳ∗i )| = ε|(D− −D)y∗2(xi)|,

=
εh1
2

|y∗
′′

2 (t)|,

=
h1
2
e(x, β), (28)

for some point t satisfying, xi−1 ≤ t ≤ xi, where e(x, β) = e−x
√

β/ε+e−(1−x)
√

β/ε.

Since τ = min{1
4
,

√
ε

β
lnN}, the argument is considered for two cases τ =

1

4

and τ =

√
ε

β
lnN separately.
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Case 1: τ =
1

4
. Note that

1

4
≤

√
ε

β
lnN implies ε−1/2 ≤ C lnN.

From (27) and (28) and using h1 ≤ CN−1. we have{
|P ∗N/4

1 (ȳ∗(xi)− ȳ∗i )| ≤ CN−1 lnN.

|P ∗N/4
2 (ȳ∗(xi)− ȳ∗i )| ≤ CN−1 ≤ CN−1 lnN.

(29)

Case 2: τ =

√
ε

β
lnN .

From (27) and (28), we have{
|P ∗N/4

1 (ȳ∗(xi)− ȳ∗i )| ≤ CN−1 lnN.

|P ∗N/4
2 (ȳ∗(xi)− ȳ∗i )| ≤ CN−1 ≤ CN−1 lnN.

(30)

Since y∗1(0) = y∗0,1, y∗2(0) = y∗0,2 by the discrete stability result given by Lemma
4.8 it follows that

||ȳ∗(xi)− ȳ∗i || ≤ CN−1 lnN.

�

Theorem 5.2. Let ȳ∗ = (y∗1 , y
∗
2)

T and ȳ∗1 = (y∗11 , y
∗1
2 )T be, respectively, the

solutions of the IVPs
y∗

′

1 − y∗2 = 0,

−εy∗′

2 + b(x)y∗1 = f(x)− c(x)u01(x), x ∈ Ω,

y∗1(0) = α′, y∗2(0) = β′.

(31)

and 
y∗1

′

1 − y∗12 = 0,

−εy∗1′2 + b(x)y∗11 = f(x)− c(x)u01(x), x ∈ Ω,

y∗11 (0) = α′ +O(ε), y∗12 (0) = β′,

(32)

then ||ȳ∗(x)− ȳ∗1(x)|| ≤ C
√
ε.

Proof. Let w̄ = ȳ∗ − ȳ∗1. Then w̄ satisfies
w′

1 − w2 = 0,

−εw′
2 + b(x)w1 = 0, x ∈ Ω,

w1(0) = O(ε), w2(0) = 0.

(33)

Using the maximum principle for the system (33) as in Doolan [1], we have

||ȳ∗(x)− ȳ∗1(x)|| ≤ C
√
ε, ∀x ∈ Ω.

�

Theorem 5.3. Let ȳ∗ = (y∗1 , y
∗
2)

T be the solution of the IVP (20). Further, let
ȳ∗i = (y∗1,i, y

∗
2,i)

T be the numerical solution of the IVP (32) after applying the
Euler’s finite difference scheme as given in (21). Then,

||ȳ∗(xi)− ȳ∗i || ≤ C
√
ε+ CN−1 lnN for 0 ≤ i ≤ N/4 and xi ∈ Ω̄

N/4
τ .
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Proof. From Theorem 5.1, ||ȳ∗1(xi)− ȳ∗i || ≤ CN−1 lnN.
From Theorem 5.2, ||ȳ∗(xi)− ȳ∗1(xi)|| ≤ C

√
ε.

Using these estimates in the inequality,

||ȳ∗(xi)− ȳ∗i || ≤ ||ȳ∗(xi)− ȳ∗1(xi)||+ ||ȳ∗1(xi)− ȳ∗i ||,

where ȳ∗1(x) is the solution of the system (32), this theorem gets proved. �

The SPBVPs (14)-(15) is equivalent to the following IVP{
−εy′′2 (x) + b(x)y2(x) = f(x)− c(x)u01(x), x ∈ Ω,

y2(0) = q∗, y′2(0) = q,
(34)

where q∗ is the asymptotic value of the solution of the BVP (14)-(15) at x = 0.
Because of uniqueness of the solutions of the IVP (34) and the BVP (14)-(15), we
have the following result on the error estimate for the left inner region problem.

Theorem 5.4. Let y⋆2(xi) be the solution of the BVP (14)-(15). Further, let
ȳ∗i = (y∗1,i, y

∗
2,i)

T be the numerical solution of the IVP (21). Then,

|y⋆2(xi)− y∗1,i| ≤ C
√
ε+ CN−1 lnN for 0 ≤ i ≤ N/4, xi ∈ Ω̄N/4

τ .

Proof. Consider the inequality

|y⋆2(xi)− y∗1,i| ≤ |y⋆2(xi)− y∗11 (xi)|+ |y∗11 (xi)− y∗1,i|,

where y∗11 (x) is the solution of the system (32). The proof follows from Theorem
5.2 and Theorem 5.3. �

Theorem 5.5. Let ȳ be the solution of the BVP (6)-(7) and let ȳ∗i = (y∗1,i, y
∗
2,i)

T

be the numerical solution of the IVP (21). Then,

|y2(xi)− y∗1,i| ≤ C
√
ε+ CN−1 lnN for 0 ≤ i ≤ N/4, xi ∈ Ω̄N/4

τ .

Proof. Consider the inequality,

|y2(xi)− y∗1,i| ≤ |y2(xi)− y⋆2(xi)|+ |y⋆2(xi)− y∗1,i|,

where y⋆2(x) is the solution of the BVP(14)-(15). The proof follows from Theo-
rem 4.3 and Theorem 5.4. �

Error estimates for Right Inner Region Problem.

Theorem 5.6. Let ȳ∗∗ = (y∗∗1 , y∗∗2 )T and ȳ∗∗i = (y∗∗1,i, y
∗∗
2,i)

T be, respectively,
the solutions of (23) and (24). Then,

||ȳ∗∗(xi)− ȳ∗∗i || ≤ CN−1 lnN for 0 ≤ i ≤ N/4, xi ∈ Ω̄N/4
τ .

Proof. Proof is similar as Theorem 5.1. �
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Theorem 5.7. Let ȳ∗∗∗ = (y∗∗1 , y∗∗2 )T and ȳ∗∗1 = (y∗∗11 , y∗∗12 )T be, respectively,
the solutions of the IVPs

y∗∗
′

1 − y∗∗2 = 0,

−εy∗∗′

2 + b(x)y∗∗1 = f(x)− c(x)u01(x), x ∈ Ω,

y∗∗1 (1) = α′′, y∗∗2 (1) = β′′
(35)

and 
y∗∗1

′

1 − y∗∗12 = 0,

−εy∗∗1′2 + b(x)y∗∗11 = f(x)− c(x)u01(x), x ∈ Ω,

y∗∗11 (1) = α′′ +O(ε), y∗∗12 (1) = β′′
(36)

then, ||ȳ∗∗(x)− ȳ∗∗1(x)|| ≤ C
√
ε.

Proof. Proof is similar as Theorem 5.2. �

Theorem 5.8. Let ȳ∗∗ = (y∗∗1 , y∗∗2 )T be the solution of the IVP (35). Further,
let ȳ∗∗i = (y∗∗1,i, y

∗∗
2,i)

T be the numerical solution of the IVP (36) after applying
the Euler’s finite difference scheme as given in (24). Then,

||ȳ∗∗(xi)− ȳ∗∗i || ≤ C
√
ε+ CN−1 lnN for 0 ≤ i ≤ N/4 and xi ∈ Ω̄N/4

τ .

Proof. From Theorem 5.7, ||ȳ∗∗(xi)− ȳ∗∗1(xi)|| ≤ C
√
ε.

From Theorem 5.6, ||ȳ∗∗1(xi)− ȳ∗∗i || ≤ CN−1 lnN.
Using these estimates in the inequality,

||ȳ∗∗(xi)− ȳ∗∗i || ≤ ||ȳ∗∗(xi)− ȳ∗∗1(xi)||+ ||ȳ∗∗1(xi)− ȳ∗∗i ||,

where ȳ∗∗1(x) is the solution of the system (36), this theorem gets proved. �

The BVP (14)-(15) is equivalent to the following IVP{
−εy′′2 (x) + b(x)y2(x) = f(x)− c(x)u01(x), x ∈ Ω,

y2(1) = r∗, y′2(1) = r,
(37)

where r∗ is the asymptotic value of the solution of the BVP (14)-(15) at x = 1.
Because of uniqueness of the solution of the IVP (37) and the BVP (14)-(15), we
have the following result on the error estimate for the right inner region problem.

Theorem 5.9. Let y⋆2(xi) be the solution of the BVP (14)-(15). Further, let
ȳ∗∗i = (y∗∗1,i, y

∗∗
2,i)

T be the numerical solution of the IVP (24). Then,

|y⋆2(xi)− y∗∗1,i| ≤ C
√
ε+ CN−1 lnN for 0 ≤ i ≤ N/4, xi ∈ Ω̄N/4

τ .

Proof. Consider the inequality

|y⋆2(xi)− y∗∗1,i| ≤ |y⋆2(xi)− y∗∗11 (xi)|+ |y∗∗11 (xi)− y∗∗1,i|,

where y∗∗11 (x) is the solution of the BVP (36). The proof follows from Theorem
5.7 and Theorem 5.8. �
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Theorem 5.10. Let ȳ be the solution of the BVP (6)-(7) and let ȳ∗∗i = (y∗∗1,i, y
∗∗
2,i)

T ,
be the numerical solution of the IVP (24). Then,

|y2(xi)− y∗∗1,i| ≤ C
√
ε+ CN−1 lnN for 0 ≤ i ≤ N/4, xi ∈ Ω̄N/4

τ .

Proof. Consider the inequality,

|y2(xi)− y∗∗1,i| ≤ |y2(xi)− y⋆2(xi)|+ |y⋆2(xi)− y∗∗1,i|,

where y⋆2(x) is the solution of the system (14)-(15). The proof follows from
Theorem 4.3 and Theorem 5.9. �

5.2. Outer Region Problem. Adopting the method of analysis provided in
[2] the following theorems can be proved.

Theorem 5.11. Let y2(xi) be the solution of the BVP (25) and the solution
y2,i of the BVP (26) satisfy

|y2(xi)− y2,i| ≤ CN−1 lnN for 0 ≤ i ≤ N/2, xi ∈ Ω̄N/2
τ

Proof. Please refer [2]. �

Theorem 5.12. Let y⋆2(xi) be the solution of the BVP (14)-(15) and y2,i be
the numerical solution of the BVP (25) after applying the standard FD scheme
as given in (26). Then,

|y⋆2(xi)− y2,i| ≤ C
√
ε+ CN−1 lnN for 0 ≤ i ≤ N/2, xi ∈ Ω̄N/2

τ .

Proof. From Theorem 4.3, |y⋆2(xi)− y2(xi)| ≤ C
√
ε.

From Theorem 5.11, |y2(xi)− y2,i| ≤ CN−1 lnN.
Using these estimates in the inequality,

|y⋆2(xi)− y2,i| ≤ |y⋆2(xi)− y2(xi)|+ |y2(xi)− y2,i|,

where y2(xi) is the solution of the BVP (25), this theorem gets proved. �

Theorem 5.13. Let ȳ be the solution of the BVP (6)-(7) and y2,i be the
numerical approximation obtained for y2(xi) from the BVP (25) after applying
the standard FD scheme as given in (26). Then,

|y2(xi)− y2,i| ≤ C
√
ε+ CN−1 lnN for 0 ≤ i ≤ N/2, xi ∈ Ω̄N/2

τ .

Proof. From Theorem 4.3, |y2(xi)− y⋆2(xi)| ≤ C
√
ε,

From Theorem 5.12, |y⋆2(xi)− y2,i| ≤ CN−1 lnN.
Using these estimates in the inequality,

|y2(xi)− y2,i| ≤ |y2(xi)− y⋆2(xi)|+ |y⋆2(xi)− y2,i|,

where y⋆2(xi) is the solution of the BVP (14)-(15), this theorem gets proved. �
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6. Non-linear problem

Consider the quasi-linear BVP

−εy
′′′
(x) = F (x, y, y′), x ∈ Ω, (38)

y(0) = p, y′′(0) = q, y′′(1) = r. (39)

where F (x, y, y′) is a smooth function such that
Fy′(x, y, y′) ≥ β, β > 0,

0 ≥ Fy(x, y, y
′) ≥ −γ, γ > 0, β − 2γ ≥ η′,

for some η′ > 0.

(40)

Assume that the reduced problem F (x, y, y′) = 0, y(0) = p has a solution
y0 ∈ C(3)(Ω̄). Then (38)-(39) has a unique solution and has less severe twin
boundary layers of width O(

√
ε) near x = 0 and x = 1 ([18, 38]). Analytical

results such as existence, uniqueness and asymptotic behavior of the solution of
(38)-(39) can be found in [7, 8, 18, 32, 38].

In order to obtain a numerical solution of (38)-(39), first Newton’s method
of quasi-linearisation is applied [1] and the problem is linearized. Consequently,
we get a sequence {y[m]}∞0 of successive approximations with a proper choice
of initial guess y[0] (Here also y0(x) = p + qx is a good initial approximation).
We define y[m+1] for each fixed non-negative integer m, to be the solution of the
following linear problem:{

−ε(y′′′
(x))[m+1] + bm(x)(y′(x))[m+1] + cm(x)(y(x))[m+1] = F [m](x),

y[m+1](0) = p, (y′′(x))[m+1](0) = q, (y′′(x))[m+1](1) = r,
(41)

where 
b[m](x) = Fy′(x, y[m], (y′)[m]),

c[m](x) = Fy(x, y
[m], (y′)[m]),

F [m](x) = F (x, y[m], (y′)[m])− (y′)[m]Fy′(x, y[m], (y′)[m])

−(y)[m]Fy(x, y
[m], (y′)[m]).

(42)

and for each m, b[m](x), c[m](x) satisfy (40)

Remark 6.1. If the initial guess y[0] is sufficiently close to the solution y(x) of
(38)-(39), then, following the method of proof given in [1], one can prove that
the sequence {y[m]}∞0 converges to y(x). From (40), it follows that for each fixed
m:

b[m](x) = Fy′(x, y[m], (y′)[m]) ≥ β, β > 0,

0 ≥ c[m](x) = Fy(x, y
[m], (y′)[m]) ≥ −γ, γ > 0,

β − 2γ ≥ η′, for some η′ > 0.
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Remark 6.2. The solution of the reduced problem of (38)-(39) or a suitable
approximation will be taken as the initial guess y[0] to generate the successive
approximations {y[m]}∞0 .

Remark 6.3. For the above Newton’s quasi-linearisation process the following
convergence criterion is used.

|y[m+1](xj)− y[m](xj)| ≤ δ, xj ∈ Ω̄, m ≥ 0.

7. Illustrations

In this section, we present two examples to illustrate the method described
in this paper. Let Y N be a numerical approximation for the exact solution y on
the mesh ΩN and N is the number of mesh points. We compute the maximum
point-wise errors using

EN
ε = max

x∈Ω̄N
| Y N (xj)− y(xj) | and EN = max

ε
EN

ε .

Then, the order of convergence is given by

p∗ = min
N

pN where, pN = log2

{
EN

E2N

}
.

Example 7.1. Consider the BVP

−εy
′′′
(x) + (x+ 2)y′(x)− y(x) = ε3/4(log(x+ 2)),

y(0) = 1, y′′(0) = 0, y′′(1) = 1.

The numerical result is presented in Table 1.

Example 7.2. Consider the BVP

−εy
′′′
(x) + 4(y′)2(x)− 4y(x) = ε5/2(x+ e−x),

y(0) = 0, y′′(0) = 1, y′′(1) = 0.

This BVP is linearised using the Newton’s Method of quasi-linearisation. The
numerical result is presented in Table 2. The initial approximation for y1 is
taken to be y0(x) = x.

8. Conclusions

In this paper, we presented a numerical method to solve third-order SP-
BVPs for ODEs subject to particular type of boundary conditions by adopting
the techniques of [6, 21, 32, 37] and [10]-[13], [36] who used to solve second-
order and third-order SPBVPs for ODEs. The boundary conditions help us to
reduce the given third order ordinary differential equation into a weakly coupled
system of one first order and one second order equation subject to initial and
boundary conditions, respectively. It is quite natural that one would to expect
better solution of the problem in the interval [τ, 1 − τ ]. But our numerical ex-
periments show that this method gives good solution only in the neighbourhood
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Table 1. Maximum pointwise errors EN
ε , EN and p∗for the

Example 7.1.

ε Number of mesh points N
64 128 256 512 1024

2−6 7.8320e-006 4.1259e-006 4.0088e-006 3.7689e-007 2.1038e-007

2−7 3.8882e-006 2.8736e-006 1.8870e-007 1.2494e-007 1.7760e-007

2−8 1.9941e-006 1.5318e-006 6.5349e-007 5.8470e-007 1.4380e-007

2−9 9.5705e-007 7.2589e-007 4.8175e-008 2.8835e-008 1.7690e-008

2−10 4.7452e-008 3.6795e-008 2.4587e-008 1.5368e-008 8.4450e-008

2−6 3.3552e-004 1.6376e-004 8.2380e-005 4.1690e-005 2.1345e-005

2−7 1.6276e-004 8.1380e-005 4.0690e-005 2.0345e-005 1.0173e-005

2−8 8.1380e-005 4.0690e-005 2.0345e-005 1.0173e-005 5.0863e-006

2−9 4.0690e-005 2.0345e-005 1.0173e-005 5.0863e-006 2.5431e-006

2−10 2.0345e-005 1.0173e-005 5.0863e-006 2.5431e-006 1.2716e-006

2−6 7.7913e-006 6.5522e-006 4.6232e-006 3.7669e-006 2.6242e-006

2−7 7.3962e-006 6.5065e-006 4.3068e-006 2.6232e-006 1.3118e-006

2−8 6.9758e-007 5.8787e-007 2.1533e-007 1.3118e-007 6.5589e-007

2−9 6.4879e-007 4.9389e-007 1.0767e-007 6.5589e-008 3.2795e-008

2−10 5.7440e-008 4.6944e-008 4.3843e-008 3.2895e-008 1.3697e-008

EN 3.3552e-004 1.6376e-004 8.2380e-005 4.1690e-005 2.1345e-005

p 1.0348e+000 9.9122e-001 9.8259e-001 p∗9.6580e-001

The order of convergence=9.6580e-001
CPU time(sec.)=7.4219e+000

of x = 0 and x = 1. Of course, an approximate solution can be improved by
taking better approximate initial condition as said in Section 4. This is the
reason for taking the solution of the IVP only in the interval [0, τ ]. In [32], both
inner and outer region problems are BVPs, whereas in our case the inner region
problem is an IVP and the outer region problem is a BVP. Naturally IVPs can
be treated more easily compared with BVPs. Though the present method yields
almost the same order of convergence as given in [32], the method produces very
good reduction on the maximum-pointwise error compared with [32]. The main
advantage of this paper is that due to decoupling the system, the size of the
matrix to be inverted is reduced from 2N − 1 to N − 1. This results in a good
reduction of the computation time. Error estimates derived in Section 5 show
first order convergence. Our numerical experiments show that this method gives
good approximate solution especially with in the boundary layer regions which
can be seen from the numerical results presented in Table 1 and Table 2. In all
the tables the numerical results appearing in the rows 1-5 and 11-15 correspond
to the left and right boundary layers, respectively. The rest of the rows namely
6-10 correspond to the outer region.



300 J.Christy Roja and A.Tamilselvan

Table 2. Maximum pointwise errors EN
ε , EN and p∗ for the

Example 7.2.

ε Number of mesh points N
64 128 256 512 1024

2−6 8.1361e-007 6.1746e-007 4.1030e-007 8.4383e-007 4.4263e-007

2−7 4.0181e-007 3.1373e-007 2.1014e-007 1.2291e-007 7.1810e-008

2−8 2.1090e-007 1.5186e-007 1.1007e-007 6.1956e-008 3.5415e-008

2−9 1.1045e-007 7.5933e-008 5.1036e-008 3.1478e-008 1.7712e-008

2−10 5.1225e-008 3.7967e-008 2.5118e-008 2.5039e-008 1.8522e-008

2−6 1.2877e-004 6.6463e-005 3.3757e-005 1.7010e-005 0.9080e-005

2−7 6.9374e-005 1.1627e-005 9.0215e-00 2.5499e-007 3.4951e-007

2−8 4.5921e-007 1.7017e-007 2.8588e-008 2.2584e-008 1.5193e-008

2−9 6.5193e-008 5.5193e-008 4.5193e-008 3.0816e-008 2.6496e-008

2−10 5.6496e-008 4.0496e-008 3.6496e-008 2.6496e-008 1.7611e-008

2−6 2.9596e-004 1.6452e-004 9.1354e-005 5.0554e-005 2.7827e-005

2−7 6.4798e-006 5.2259e-007 4.5679e-007 2.7827e-007 1.3914e-007

2−8 6.3991e-007 4.1131e-007 2.2841e-007 1.3915e-007 1.9569e-008

2−9 6.2095e-007 4.0565e-007 3.1420e-007 6.9568e-008 5.4784e-008

2−10 5.8497e-008 5.0282e-008 4.7099e-008 3.4784e-008 1.7392e-008

EN 1.2877e-004 6.6463e-005 3.3757e-005 1.7010e-005 0.9080e-005

p 9.5417e-001 9.7736e-001 9.8880e-001 p∗9.0562e-001

The order of convergence= 9.0562e-001

CPUtime(sec.) =1.1781e+001
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